SPOJ SUBLEX Lexicographical Substring Search 后缀自动机

题目大意:

就是现在对于给出的长度不超过90000的字符串进行Q(Q <= 500)次询问, 每次询问给出一个K, 要求输出第K小的子串(0 < K < 2^31)

其中相同的子串只算一次例如“aaa"的子串是"a", "aa", "aaa"


大致思路:

首先对于给出的字符串建立后缀自动机, 然后利用后缀自动机的性质, 所有相同的子串一定会在同一点终止, 那么, 从根开始, 每次都选择尽量小的字符走, 首先我们可以dfs预处理出每个状态点处代表的可能向下的不同字串有多少个, 然后就知道每个字符向下走会有多少种可能了, 于是根据这个图中每次沿着满足向下能找到第K小的边走即可


代码如下:

Result  :  Accepted     Memory  :  28672 KB     Time  :  410 ms

/*
 * Author: Gatevin
 * Created Time:  2015/4/10 9:54:27
 * File Name: Rin_Tohsaka.cpp
 */
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;
#define foreach(e, x) for(__typeof(x.begin()) e = x.begin(); e != x.end(); ++e)
#define SHOW_MEMORY(x) cout<<sizeof(x)/(1024*1024.)<<"MB"<<endl

#define maxn 90010*2
#define maxm 90010


struct Suffix_Automation
{
    struct State
    {
        State *par;
        State *go[26];
        int val, mi, right;
        lint cnt;
        void init(int _val = 0)
        {
            par = 0, val = _val, mi = 0, cnt = 0, right = 0;
            memset(go, 0, sizeof(go));
        }
        int calc()
        {
            if(par == 0) return 0;
            return val - par->val;
        }
    };
    State *root, *last, *cur;
    State nodePool[maxn];
    State* newState(int val = 0)
    {
        cur->init(val);
        return cur++;
    }
    void initSAM()
    {
        cur = nodePool;
        root = newState();
        last = root;
    }
    void extend(int w)
    {
        State *p = last;
        State *np = newState(p->val + 1);
        np->right = 1;
        while(p && p->go[w] == 0)
        {
            p->go[w] = np;
            p = p->par;
        }
        if(p == 0)
        {
            np->par = root;
        }
        else
        {
            State *q = p->go[w];
            if(p->val + 1 == q->val)
            {
                np->par = q;
            }
            else
            {
                State *nq = newState(p->val + 1);
                memcpy(nq->go, q->go, sizeof(q->go));
                nq->par = q->par;
                q->par = nq;
                np->par = nq;
                while(p && p->go[w] == q)
                {
                    p->go[w] = nq;
                    p = p->par;
                }
            }
        }
        last = np;
    }
    
    int d[maxm];
    State* b[maxn];
    void topo()
    {
        int cnt = cur - nodePool;
        memset(d, 0, sizeof(d));
        int maxVal = 0;
        for(int i = 1 ; i < cnt; i++)
            maxVal = max(maxVal, nodePool[i].val), d[nodePool[i].val]++;
        for(int i = 1; i <= maxVal; i++) d[i] += d[i - 1];
        for(int i = 1; i < cnt; i++) b[d[nodePool[i].val]--] = &nodePool[i];
        b[0] = root;
    }
    
    void SAMInfo()
    {
        State *p;
        int cnt = cur - nodePool;
        for(int i = cnt - 1; i > 0; i--)
        {
            p = b[i];
            p->par->right += p->right;
            p->mi = p->par->val + 1;
        }
    }
    
    lint dfs(State *now)//返回从now状态向下有多少种可能的串
    {
        if(now->cnt) return now->cnt;
        lint ret = 0;
        for(int i = 0; i < 26; i++)
            if(now->go[i])
                ret += dfs(now->go[i]);
        return now->cnt = ret + (now != root);
    }
    
    void solve(lint K)//output the Kth smallest substring
    {
        State *now = root;
        while(K)
        {
            for(int i = 0; i < 26; i++)
            {
                if(!now->go[i]) continue;
                if(K > now->go[i]->cnt)
                    K -= now->go[i]->cnt;
                else
                {
                    putchar(i + 'a');
                    K--;
                    now = now->go[i];
                    break;
                }
            }
        }
        putchar('\n');
        return;
    }
};

Suffix_Automation sam;
char s[maxm];
int Q, K;

int main()
{
    scanf("%s", s);
    int len = strlen(s);
    sam.initSAM();
    for(int i = 0; i < len; i++)
        sam.extend(s[i] - 'a');
    sam.topo();
    sam.SAMInfo();
    sam.dfs(sam.root);
    scanf("%d", &Q);
    while(Q--)
    {
        scanf("%d", &K);
        sam.solve((lint)K);
    }
    return 0;
}


你可能感兴趣的:(spoj,后缀自动机,第K小子串,SUBLEX)