Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
第一种方法,递归,超时
class Solution { int helper(vector<vector<int> >&triangle,int n,int i,int j){ if(i==n-1) return triangle[i][j]; return triangle[i][j]+min(helper(triangle,n,i+1,j),helper(triangle,n,i+1,j+1)); } public: int minimumTotal(vector<vector<int>>& triangle) { return helper(triangle,triangle.size(),0,0); } };第二种方法,通过,但空间复杂度不理想
class Solution { public: int minimumTotal(vector<vector<int> > &triangle) { int n=triangle.size(); int m=triangle[n-1].size(); if(n<1) return 0; int b[n][m]; for(int i=0;i<m;++i) b[n-1][i]=triangle[n-1][i]; for(int i=n-2; i>=0; i--) for(int j=0; j<triangle[i+1].size(); j++) b[i][j] = triangle[i][j] + min(b[i+1][j], b[i+1][j+1]); return b[0][0]; } };
class Solution { public: int minimumTotal(vector<vector<int> > &triangle) { int sz = triangle.size(); if(sz<1) return 0; vector<int> b = triangle[sz-1]; for(int i=sz-2; i>=0; --i) { for(int j=0; j<triangle[i].size(); ++j) { b[j] = triangle[i][j] + min(b[j], b[j+1]); } } return b[0]; } };