see: http://acm.sdut.edu.cn/bbs/read.php?tid=1177 黄源河:《左偏树的特点及其应用》
1. 定义:
左偏树(Leftist Tree)是一种可并堆的实现。左偏树是一棵二叉树,它的节点除了和二叉树的节点一样具有左右子树指针( left, right )外,还有两个属性:键值和距离(dist)。键值上面已经说过,是用于比较节点的大小。距离则是如下定义的:
节点i称为外节点(external node),当且仅当节点i的左子树或右子树为空 ( left(i) = NULL或right(i) = NULL );节点i的距离(dist(i))是节点i到它的后代中,最近的外节点所经过的边数。特别的,如果节点i本身是外节点,则它的距离为0;而空节点的距离规定为-1 (dist(NULL) = -1)。在本文中,有时也提到一棵左偏树的距离,这指的是该树根节点的距离。
2. 优点:
合并复杂度 O(log N)
最小堆的合并复杂度为O(N).
3. 代码:
#include <cstdio> #include <algorithm> using namespace std; #define typec int const int na = -1; const int N = 1000; struct node { typec key; int l, r, f, dist; }tr[N]; // find i's root int iroot(int i) { if(i == na) { return i; } while(tr[i].f != na) { i = tr[i].f; } return i; } // two root: rx, ry int merge(int rx, int ry) { if(rx == na) { return ry; } if(ry == na) { return rx; } if(tr[rx].key > tr[ry].key) { swap(rx, ry); } int r = merge(tr[rx].r, ry); tr[rx].r = r; tr[r].f = rx; if(tr[r].dist > tr[tr[rx].l].dist) { swap(tr[rx].l, tr[rx].r); } if(tr[rx].r == na) { tr[rx].dist = 0; } else { tr[rx].dist = tr[tr[rx].r].dist + 1; } return rx; } // add a new node (i, key) int ins(int i, typec key, int root) { tr[i].key = key; tr[i].l = tr[i].r = tr[i].f = na; tr[i].dist = 0; return root = merge(root, i); } // delete node i int del(int i) { if(i == na) { return i; } int x, y, l, r; l = tr[i].l; r = tr[i].r; y = tr[i].f; tr[i].l = tr[i].r = tr[i].f = na; tr[x=merge(l,r)].f = y; if(y != na && tr[y].l == i) { tr[y].l = x; } if(y != na && tr[y].r == i) { tr[y].r = x; } for(; y != na; x = y, y = tr[y].f) { if(tr[tr[y].l].dist < tr[tr[y].r].dist) { swap(tr[y].l, tr[y].r); } if(tr[tr[y].r].dist + 1 == tr[y].dist) { break; } tr[y].dist = tr[tr[y].r].dist + 1; } if(x != na) { return iroot(x); } else { return iroot(y); } } node top(int root) { return tr[root]; } node pop(int &root) { node out = tr[root]; int l = tr[root].l, r = tr[root].r; tr[root].l = tr[root].r = tr[root].f = na; tr[l].f = tr[r].f = na; root = merge(l, r); return out; } int add(int i, typec val) { if(i == na) { return i; } if(tr[i].l == na && tr[i].r == na && tr[i].f == na) { tr[i].key += val; return i; } typec key = tr[i].key + val; int rt = del(i); return ins(i, key, rt); } void init(int n) { for(int i = 1; i < N; i++) { scanf("%d", &tr[i].key); tr[i].l = tr[i].r = tr[i].f = na; tr[i].dist = 0; } } // print the info of node i void print(int i) { printf("node %d : l-> %d, r-> %d, f-> %d, dist-> %d\n", i, tr[i].l, tr[i].r, tr[i].f, tr[i].dist); } int main() { int root = na; for(int i = 1; i < 16; i++) { root = ins(i, i, root); } for(int i = 1; i < 16; i++) { print(i); } del(1); for(int i = 1; i < 16; i++) { print(i); } return 0; }