hdu 2874 森林中处理最近公共祖先问题

注意两个问题,第一个是在森林中,所以需要判断两个点是否是在一棵树中,第二个是求取路径时可以借助到根的路径长度来求取,类似于前缀和的一种优化

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#define MAX 20007

using namespace std;

int n , m  , c , u , v , w ;

struct
{
    int v , next , w;
}e[MAX<<1];

struct 
{
    int v , next, index; 
}q[2000007];

int cc = 0;
int head1[MAX];
int head2[MAX];
int fa[MAX];

int find ( int x )
{
    return fa[x] == x ? x : fa[x] = find ( fa[x] );
}

void add1 ( int u , int v , int w )
{
    e[cc].v = v;
    e[cc].w = w;
    e[cc].next = head1[u];
    head1[u] = cc++;
}

void add2 ( int u , int v , int i )
{
    q[cc].v = v;
    q[cc].next = head2[u];
    q[cc].index = i;
    head2[u] = cc++;
}

int vis[MAX];
int root[MAX];
int dis[MAX];
int yes[1000007];

void init ()
{
    memset ( head1 , -1 , sizeof ( head1 ) );
    memset ( head2 , -1 , sizeof ( head2 ) );
    cc = 0;
    for ( int i = 1 ; i <= n+1 ; i++ ) fa[i] = i;
    memset ( vis , 0 , sizeof ( vis ) );
    memset ( dis , 0 , sizeof ( dis ) );
    memset ( root , 0 , sizeof ( root ) );
} 

void lca ( int u , int p , int r )
{
    vis[u] = 1;
    root[u] = r;
    for ( int i = head1[u] ; i != -1 ; i = e[i].next )
    {
        int v = e[i].v;
        if ( v == p ) continue;
        dis[v] = dis[u] + e[i].w;
        lca ( v , u , r );
        fa[v] = u;
    }
    for ( int i = head2[u] ; i != -1 ; i = q[i].next )
    {
        int v = q[i].v;
        if ( root[v] != r ) continue;
        int l = find ( v );
        yes[q[i].index] = dis[u] + dis[v] - 2*dis[l];
    }
}

int main ( )
{
    while ( ~scanf ( "%d%d%d" , &n , &m , &c ) )
    {
        init ( );
        for ( int i = 0 ; i < m ; i++ )
        {
            scanf ( "%d%d%d" , &u ,&v , &w );
            add1 ( u , v , w );
            add1 ( v , u , w );
        }
        cc = 0;
        for ( int i = 0 ; i < c ; i++ )
        {
            scanf ( "%d%d" , &u , &v );
            add2 ( u , v , i );
            add2 ( v , u , i );
        }
        memset ( yes , -1 , sizeof ( yes ) );
        for ( int i = 1 ; i <= n ; i++ )
            if ( !vis[i] ) lca ( i , -1 , i );
        for ( int i = 0 ; i < c ; i ++ )
            if ( yes[i] == -1 )
                printf ( "Not connected\n" ); 
            else printf ( "%d\n" , yes[i] );
    }
    return 0;
}


你可能感兴趣的:(C++,HDU,LCA)