玩具装箱

http://www.lydsy.com/JudgeOnline/problem.php?id=1010

斜率优化DP

设dp[i]表示前i个玩具装箱所需的最小耗费

dp[i] = min(dp[j]+(i-j-1+∑C[k]-L)^2)

设sc[i] = ∑C[k] ( 1<= k <= i)

则有

   dp[j]+(i-j-1+∑C[k]-L)^2

= dp[j]+(i-j-1+sc[i]-sc[j]-L)^2

= dp[j]+((i-1+sc[i]-L)-(sc[j]+j))^2

= dp[j]+(i-1+sc[i]-L)^2+(sc[j]+j)^2-2*(i-1+sc[i]-L)*(sc[j]+j)

用y表示dp[j]+(sc[j]+j)^2

用x表示sc[j]+j

用a表示2*(i-a+sc[i]-L)

G = -ax+y,其中a是单调递增的,满足斜率优化的条件

则dp[i] = min(G)+i-1+sc[i]-L    

 
 
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <queue>
#include <algorithm>
#include <vector>
#include <cstring>
#include <stack>
#include <cctype>
#include <utility>   
#include <map>
#include <string>  
#include <climits> 
#include <set>
#include <string>    
#include <sstream>
#include <utility>   
#include <ctime>
#include <bitset>
 
using std::priority_queue;
using std::vector;
using std::swap;
using std::stack;
using std::sort;
using std::max;
using std::min;
using std::pair;
using std::map;
using std::string;
using std::cin;
using std::cout;
using std::set;
using std::queue;
using std::string;
using std::stringstream;
using std::make_pair;
using std::getline;
using std::greater;
using std::endl;
using std::multimap;
using std::deque;
using std::unique;
using std::lower_bound;
using std::random_shuffle;
using std::bitset;
using std::upper_bound;
using std::multiset;
 
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PAIR;
typedef multimap<int, int> MMAP;
typedef LL TY;
typedef long double LF;
 
const int MAXN(50010);
const int MAXM(100010);
const int MAXE(100010);
const int MAXK(6);
const int HSIZE(31313);
const int SIGMA_SIZE(26);
const int MAXH(19);
const int INFI((INT_MAX-1) >> 1);
const ULL BASE(31);
const LL LIM(10000000);
const int INV(-10000);
const int MOD(20100403);
const double EPS(1e-7);
const LF PI(acos(-1.0));
 
template<typename T> void checkmax(T &a, T b){if(b > a) a = b;}
template<typename T> void checkmin(T &a, T b){if(b < a) a = b;}
template<typename T> T ABS(const T &a){return a < 0? -a: a;}
 
int que[MAXN];
int front, back;
LL sc[MAXN]; 
LL table[MAXN];
LL Y(int ind){return table[ind]+(ind+sc[ind])*(ind+sc[ind]);}
LL X(int ind){return ind+sc[ind];}
 
int main()
{
    int N, L;
    while(~scanf("%d%d", &N, &L))
    {
        for(int i = 1; i <= N; ++i)
        {
            scanf("%lld", sc+i);
            sc[i] += sc[i-1];
        }
        LL ans = 1e12;
        front = 0;
        back = -1;
        que[++back] = 0;
        for(int i = 1; i <= N; ++i)
        {
            LL temp =i-1+sc[i]-L; 
            LL a = 2*temp;
            while(back-front > 0 && (-a)*X(que[front+1])+Y(que[front+1]) <= (-a)*X(que[front])+Y(que[front])) ++front;
            table[i] = (-a)*X(que[front])+Y(que[front])+temp*temp;
            while(back-front > 0 && (Y(i)-Y(que[back-1]))*(X(i)-X(que[back])) >= (Y(i)-Y(que[back]))*(X(i)-X(que[back-1]))) --back;
            que[++back] = i;
        }
        printf("%lld\n", table[N]);
    }
    return 0;
}



你可能感兴趣的:(玩具装箱)