//阶乘各算法的 C++ 类实现
#include <iostream>
#include <cstring>
#include <iomanip>
#include <cmath>
using namespace std;
class Factorial {
static const int MAXN = 5001; // 最大阶乘数,实际用不到这么大
int *data[MAXN]; // 存放各个数的阶乘
int *nonzero; // 从低位数起第一个非0数字
int maxn; // 存放最大已经计算好的n的阶乘
int SmallFact(int n); // n <= 12的递归程序
void TransToStr(int n, int *s); // 将数n倒序存入数组中
void Multply (int* A, int* B, int* C, int totallen); // 执行两个高精度数的乘法
public:
Factorial();
~Factorial();
void Calculate(int n); // 调用计算阶乘
int FirstNonZero(int n); // 返回阶乘末尾第一个非0数字
int CountZeros(int n); // 返回阶乘末尾有多少个0
int SecondNum(int n); // 返回阶乘左边的第二个数字
bool CanDivide(int m, int n); // 判断数值 m 是否可以整除 n!
void Output(int n) const;
};
int Factorial::SmallFact(int n) {
if (n == 1 || n == 0) return 1;
return SmallFact(n-1)*n;
}
void Factorial::TransToStr(int n, int *tmp) {
int i = 1;
while (n) {
tmp[i++] = n%10;
n /= 10;
}
tmp[0] = i-1;
}
void Factorial::Multply (int* A, int* B, int* C, int totallen)
{
int i, j, len;
memset(C, 0, totallen*sizeof(int));
for (i = 1; i <= A[0]; i++)
for (j = 1; j <= B[0]; j++) {
C[i+j-1] += A[i]*B[j]; // 当前i+j-1位对应项 + A[i] * B[j]
C[i+j] += C[i+j-1]/10; // 它的后一位 + 它的商(进位)
C[i+j-1] %= 10; // 它再取余即可
}
len = A[0] + B[0];
while (len > 1 && C[len] == 0 ) len--; // 获得它的实际长度
C[0] = len;
}
Factorial::Factorial() { // 构造函数,先把<=12的阶乘计算好
maxn = 12; data[0] = new int [2];
data[0][0] = 1; data[0][1] = 1;
int i, j = 1;
for (i = 1; i <= 12; i++) {
data[i] = new int [12];
j = j*i;
TransToStr(j, data[i]);
}
nonzero = new int [10*MAXN];
nonzero[0] = 1; nonzero[1] = 1; // nonzero[0]存储已经计算到的n!末尾非0数
}
Factorial::~Factorial() {
for (int i = 0; i <= maxn; i++)
delete [] data[i];
delete [] nonzero;
}
void Factorial::Calculate(int n) {
if (n > MAXN) return;
if (n <= maxn) return; // <= maxn的,已经在计算好的数组中了
int i, j, len;
int tmp[12];
for (i = maxn+1; i <= n; i++) {
TransToStr(i, tmp);
len = data[i-1][0] + tmp[0] + 1;
data[i] = new int [len+1];
Multply(data[i-1], tmp, data[i], len+1);
}
maxn = n;
}
int Factorial::FirstNonZero(int n) {
if (n >= 10*MAXN) {
cout << "Super Pig, your input is so large, cannot Calculate. Sorry! ";
return -1;
}
if (n <= nonzero[0]) return nonzero[n]; //已经计算好了,直接返回
int res[5][4] = {{0,0,0,0}, {2,6,8,4}, {4,2,6,8}, {6,8,4,2}, {8,4,2,6}};
int i, five, t;
for (i = nonzero[0]+1; i <= n; i++) {
t = i;
while (t%10 == 0) t /= 10; // 先去掉 i 末尾的 0,这是不影响的
if (t%2 == 0) { // t是偶数直接乘再取模10即可
nonzero[i] = (nonzero[i-1]*t)%10;
}
else { // 否则转换成 res 数组来求
five = 0;
while (t%5 == 0) {
if (five == 3) five = 0;
else five++;
t /= 5;
}
nonzero[i] = res[((nonzero[i-1]*t)%10)/2][five];
// (nonzero[i-1]*t)%10/2 正好序号为:1, 2, 3, 4 中的一个
}
}
nonzero[0] = n;
return nonzero[n];
}
/* 阶乘末尾有多少个0,实际上只与5的因子数量有关,即求 n/5+n/25+n/625+...... */
int Factorial::CountZeros(int n) {
if (n >= 2000000000) {
cout << "Super Pig, your input is so large, cannot Calculate. Sorry! ";
return -1;
}
int cnt = 0;
while (n) {
n /= 5;
cnt += n;
}
return cnt;
}
/* 输出N!左边第二位的数字:用实数乘,超过100就除以10,最后取个位即可 */
int Factorial::SecondNum(int n) {
if (n <= 3) return 0;
int i;
double x = 6;
for (i = 4; i <= n; i++) {
x *= i;
while (x >= 100) x /= 10;
}
return (int(x))%10;
}
bool Factorial::CanDivide(int m, int n) {
if (m == 0) return false;
if (n >= m) return true;
int nn, i, j, nums1, nums2;
bool ok = true;
j = (int)sqrt(1.0*m);
for (i = 2; i <= j; i++) {
if (m%i == 0) {
nums1 = 0; // 除数m的素因子i的数量
while (m%i == 0) {
nums1++;
m /= i;
}
nums2 = 0; nn = n;
while (nn) { // 求 n 含有 i 因子的数量
nn /= i;
nums2 += nn;
}
if (nums2 < nums1) { // 少于m中所含i的数量,则m肯定无法整除n!
ok = false;
break;
}
j = (int)sqrt(1.0*m); // 调整新的素因子前进范围
}
}
if (!ok || m > n || m == 0) return false;
else return true;
}
void Factorial::Output(int n) const {
if (n > MAXN) {
cout << "Super Pig, your input is so large, cannot Calculate. Sorry! ";
return;
}
int i, len = 8;
cout << setw(4) << n << "! = "; // 格式控制输出
for (i = data[n][0]; i >= 1; i--) {
cout << data[n][i];
if (++len == 58) { // 实际每输出50个字符就换行
len = 8;
cout << " ";
}
}
if (len != 8) cout << endl;
}
int main() {
int n, m, i;
Factorial f;
while (cin >> n) {
f.Calculate(n);
f.Output(n);
cout << "该阶乘末尾第一个非0数字是: " << f.FirstNonZero(n) << endl;
cout << "该阶乘总共拥有数字0的个数:" << f.CountZeros(n) << endl;
cout << "该阶乘的左边的第2位数字是:" << f.SecondNum(n) << endl;
cin >> m;
if (f.CanDivide(m, n)) cout << m << " 可以整除 " << n << "! ";
else cout << m << " 不能整除 " << n << "! ";
}
return 0;
}
//第2部分第(5)个算法的单独实现
#include<stdio.h>
int A[10] = {1,1,2,6,24,120,720,5040,40320,362880};
int ans[1024];
int sum;
void insert(int* a, int x) { // 插入排序,插成有序表
int i, j;
for (i = 1; i <= a[0]; i++)
if (a[i] >= x) break;
if (i <= a[0] && a[i] == x) return; // 如果相等,则不用插入
if (i > a[0]) {
a[++a[0]] = x;
}
else {
for (j = a[0]++; j >= i; j--)
ans[j+1] = ans[j];
ans[i] = x;
}
if (a[0] == 1023) printf(" Array Overflow! ");
}
void search(int n){
for (int i = n; i <= 9; i++){
sum += A[i]; if (sum > 1) insert(ans, sum);
if (i < 9) search(i+1);
sum -= A[i];
}
}
int main(){
int n,i;
ans[0] = 1; ans[1] = 1; //初始化ans数组,ans[0]表示表长
search(0);
//printf("len = %d ", ans[0]);
while(1){
scanf("%d",&n);
if(n < 0)break;
if(n > 409114){ printf("NO ");continue;}
for (i = 1; i <= ans[0]; i++)
if (ans[i] == n) {printf("YES "); break;}
else if (ans[i] > n) {printf("NO "); break;}
}
return 0;
}
//
阶乘相关算法及程序
有关阶乘的算法,不外乎两个方面:一是高精度计算;二是与数论相关。
一. 高精度计算阶乘
这实际上是最没有技术含量的问题,但是又会经常用到,所以还是得编写,优化它的计算。
首先看小于等于12的阶乘计算(计算结果不会超出32位范围):
int factorial(int n) {
if (n == 1 || n == 0) return 1;
return factorial(n-1)*n;
}
这个递归程序简单明了,非常直观,然而一旦n > 12,则超过32位int型的范围出现错误结果,所以上面这个递归程序仅适合n <= 12的阶乘计算,为了计算较大n的阶乘,需要将高精度乘法算法纳入到阶乘计算中来,高精度乘法过程可以如下简单的描述:(其中A * B = C,A[0], B[0], C[0]分别存储长度)
for (i = 1; i <= A[0]; i++)
for (j = 1; j <= B[0]; j++) {
C[i+j-1] += A[i]*B[j]; // 当前i+j-1位对应项 + A[i] * B[j]
C[i+j] += C[i+j-1]/10; // 它的后一位 + 它的商(进位)
C[i+j-1] %= 10; // 它再取余即可
}
C[0] = A[0] + B[0];
while (C[0] > 1 && C[C[0]] == 0) C[0]--; // 去头0,获得实际C的长度
有了这个高精度乘法之后,计算阶乘就可以简单的迭代进行:
for (i = 2; i <= n; i++) {
将i转换成字符数组;
执行高精度乘法:将上一次结果乘上i
}
二. 与数论有关
由于阶乘到后面越来越大,巧妙的利用数论求得一些有趣的数字(数值)等成为阶乘算法的设计点,下面给出几道相关的问题与分析:
(1) 计算阶乘末尾第一个非0数字:
这是一个比较经典的问题,比较复杂的算法是利用一个艰难的数学公式,可惜我不会,从网上的资料学习中,整理出下面这个简单易懂的算法:
观察n!,可以发现在乘的过程中,对于任意 n > 1,n!的末尾第一个非0数字都是偶数。我们只需保留最后一位非零数。当要乘的数中含有因数5时,我们可以把所有的因数5都当作8来乘。这是因为:
...x2*5=...10(舍)或...60,最后一位非零数为6。而恰好2*8=16,末位为6。
...x4*5=...70(舍)或...20,最后一位非零数为2。而恰好4*8=32,末位为2。
...x6*5=...30(舍)或...80,最后一位非零数为8。而恰好6*8=48,末位为8。
...x8*5=...90(舍)或...40,最后一位非零数为4。而恰好8*8=64,末位为4。
(对于n > 1时,最后一位不会出现 1, 7, 3, 9,而永远是2, 4, 6, 8的循环出现)
因此,在迭代作乘法时,主要就是计算因子5的数量,同时可见因子5的个数以4为循环节(即只需要取它的数量对4取模)。那么对于不同情况下的因子5的数量,可以通过res[5][4] = {{0,0,0,0}, {2,6,8,4}, {4,2,6,8}, {6,8,4,2}, {8,4,2,6}}来得到,使用nonzero[i]表示i的阶乘的最后一位,那么:
如果t是偶数,则直接乘:nonzero[i] = (nonzero[i-1]*t)%10。
否则nonzero[i] = res[((nonzero[i-1]*t)%10)/2][five];
其中t是除掉所有因子5的结果,five为因子5数量对4的模。相关题目:
http://acm.zju.edu.cn的第1222题。不过这一道题注意的是,它的输入n并非只在32位int数值范围内,而是有很大的长度,所以计算这道变态题目时,需要利用到高精度除法(n/=5)和高精度加法(cnt+=n)。
(2). 阶乘末尾有多少个0
分析发现,实际上形成末尾0,就是因子5的数量,而计算1~n之间包含一个因子i的个数的简单算法就是:
cnt = 0; while (n) { n /= i; cnt += n; }
因此,直接将i换成5,就可以得到因子5的数量,也即n!末尾0的数量。相关题目:http://acm.zju.edu.cn的第2022题。
(3). 返回阶乘左边的第二个数字
简单算法:用实数乘,超过100就除以10,最后取个位即可。因为整数部分的个位就是阶乘结果左边的第二个数字。相关题目:
http://acm.tongji.edu.cn的1016题。
(4). 判断数值 m 是否可以整除 n!
算法:使用素因子判断法
A. 首先直接输出两种特殊情况:
m == 0 则0肯定不会整除n!;
n >= m 则m肯定可以整除n!;
B. 那么就只剩最后一种情况:m > n,我们从m的最小素因子取起,设素因子为i那么可以求得m的素因子i的个数 nums1;再检查闭区间 i ~ n 之间的数,一共包含多少个素因子i,就可以简单的利用上面(2)中所介绍的数学公式进行计算得到nums2。如果nums2 < nums1,就表示1 ~ n中包含素因子的数量 < 除数m包含素因子i的数量,那么m必然不能整除n!,置ok = false。
C. 最后:如果 !ok or m > n or m == 0 则不能整除;否则可以整除
相关题目:http://acm.zju.edu.cn的第1850题。
(5).数字N能否表示成若干个不相同的阶乘的和:
这里可以选择的阶乘为:0! ~ 9!,实际上这一题与数论无关,与搜索有关。相关题目:http://acm.zju.edu.cn 的2358题。
分析,由于可供选择的阶乘数量较少,直接可以利用DFS搜索来做:
A. 首先将0 ~ 9的阶乘作一个表A[10];再设置一个可以组成“和”的数组ans[N]。
B. 深度优先搜索方法:
search(n) {
for(i = n; i <= 9; i++) {
sum += A[i]; //求和
如果sum在ans数组中不存在,则将sum插入到ans[]数组中
search(n+1);
sum -= A[i]; //回溯
}
}
C. 最后对于输入n,就在ans数组中查找是否存在n,如果存在,则表示n可以表示成不同的阶乘和,否则不行
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/oopos/archive/2007/10/20/1834673.aspx