求两个凸多边形减去公共部分后的面积,半平面交求凸包交即可
最后一行要输出换行,要不会WA
#include <cmath> #include <cstdio> #include <cstdlib> #include <iostream> #include <cstring> #include <string> #include <algorithm> #include <queue> #include <stack> #include <climits> using namespace std; const int MAX = 1100; struct point {double x,y;}; struct line { point a,b; double ang;}; point p[MAX],s[MAX]; line ln[MAX*2],deq[MAX*2]; const double eps = 1e-6; bool dy(double x,double y) { return x > y + eps;} // x > y bool xy(double x,double y) { return x < y - eps;} // x < y bool dyd(double x,double y) { return x > y - eps;} // x >= y bool xyd(double x,double y) { return x < y + eps;} // x <= y bool dd(double x,double y) { return fabs( x - y ) < eps;} // x == y double crossProduct(point a,point b,point c)//向量 ac 在 ab 的方向 { return (c.x - a.x)*(b.y - a.y) - (b.x - a.x)*(c.y - a.y); } bool parallel(line u,line v) { return dd( (u.a.x - u.b.x)*(v.a.y - v.b.y) - (v.a.x - v.b.x)*(u.a.y - u.b.y) , 0.0 ); } point l2l_inst_p(line l1,line l2) { point ans = l1.a; double t = ((l1.a.x - l2.a.x)*(l2.a.y - l2.b.y) - (l1.a.y - l2.a.y)*(l2.a.x - l2.b.x))/ ((l1.a.x - l1.b.x)*(l2.a.y - l2.b.y) - (l1.a.y - l1.b.y)*(l2.a.x - l2.b.x)); ans.x += (l1.b.x - l1.a.x)*t; ans.y += (l1.b.y - l1.a.y)*t; return ans; } bool equal_ang(line a,line b) // 第一次unique的比较函数 { return dd(a.ang,b.ang); } bool cmphp(line a,line b) // 排序的比较函数 { if( dd(a.ang,b.ang) ) return xy(crossProduct(b.a,b.b,a.a),0.0); return xy(a.ang,b.ang); } bool equal_p(point a,point b)//第二次unique的比较函数 { return dd(a.x,b.x) && dd(a.y,b.y); } void makeline_hp(point a,point b,line &l) // 线段(向量ab)左侧区域有效 { l.a = a; l.b = b; l.ang = atan2(a.y - b.y,a.x - b.x); // 如果是右侧区域,改成b.y - a.y,b.x - a.x } void inst_hp_nlogn(line *ln,int n,point *s,int &len) { len = 0; sort(ln,ln+n,cmphp); n = unique(ln,ln+n,equal_ang) - ln; int bot = 0,top = 1; deq[0] = ln[0]; deq[1] = ln[1]; for(int i=2; i<n; i++) { if( parallel(deq[top],deq[top-1]) || parallel(deq[bot],deq[bot+1]) ) return ; while( bot < top && dy(crossProduct(ln[i].a,ln[i].b, l2l_inst_p(deq[top],deq[top-1])),0.0) ) top--; while( bot < top && dy(crossProduct(ln[i].a,ln[i].b, l2l_inst_p(deq[bot],deq[bot+1])),0.0) ) bot++; deq[++top] = ln[i]; } while( bot < top && dy(crossProduct(deq[bot].a,deq[bot].b, l2l_inst_p(deq[top],deq[top-1])),0.0) ) top--; while( bot < top && dy(crossProduct(deq[top].a,deq[top].b, l2l_inst_p(deq[bot],deq[bot+1])),0.0) ) bot++; if( top <= bot + 1 ) return ; for(int i=bot; i<top; i++) s[len++] = l2l_inst_p(deq[i],deq[i+1]); if( bot < top + 1 ) s[len++] = l2l_inst_p(deq[bot],deq[top]); len = unique(s,s+len,equal_p) - s; } double area_polygon(point p[],int n) { if( n < 3 ) return 0.0; double s = 0.0; for(int i=0; i<n; i++) s += p[(i+1)%n].y * p[i].x - p[(i+1)%n].x * p[i].y; return fabs(s/2.0); } int main() { int n,len,m; while ( ~scanf("%d",&n) && n ) { for(int i=0; i<n; i++) scanf("%lf %lf",&p[i].x,&p[i].y); p[n] = p[0]; double a1 = area_polygon(p,n); for(int i=0; i<n; i++) makeline_hp(p[i+1],p[i],ln[i]); scanf("%d",&m); for(int i=0; i<m; i++) scanf("%lf%lf",&p[i].x,&p[i].y); double a2 = area_polygon(p,m); p[m] = p[0]; for(int i=0; i<m; i++) makeline_hp(p[i+1],p[i],ln[i+n]); n += m; inst_hp_nlogn(ln,n,s,len); double area = a1 + a2 - 2*area_polygon(s,len); printf("%8.2lf",area); } printf("\n"); return 0; }