- 论deepseek软件底层原理
星糖曙光
磨刀不误砍柴工(工具重要性)AI作画经验分享人工智能笔记
DeepSeek软件底层原理剖析一、核心架构基石(一)混合专家架构(MoE)架构本质:MoE架构模拟人类专家协作模式,构建一个专家集合。每个专家模块专门负责特定类型或领域知识的处理。任务分配机制:当模型面临输入任务时,类似智能调度系统的“路由器”会分析任务特征,将其导向最适配的专家模块。如处理医学文本时,将任务分配给擅长医学知识处理的专家,避免通用模块处理的低效性,极大提升计算效率与任务处理的针对
- DeepSeek 混合专家(MoE)架构技术原理剖析
计算机学长
通用大语言模型人工智能架构
DeepSeek混合专家(MoE)架构技术原理剖析在人工智能快速发展的当下,大规模语言模型不断突破创新,DeepSeek混合专家(MoE)架构脱颖而出,成为业内关注焦点。本文将深入剖析其技术原理,为大家揭开它的神秘面纱。一、MoE架构概述(一)基本概念混合专家(MixtureofExperts,MoE)架构,简单来说,就像是一个专家团队。在这个团队里,每个专家都是一个小型神经网络,各自擅长处理特定
- AI大模型的技术突破与传媒行业变革
AIQL
行业分析人工智能传媒
性能与成本:AI大模型的“双轮驱动”过去几年,AI大模型的发展经历了从实验室到产业化的关键转折。2025年初,以DeepSeekR1为代表的模型在数学推理、代码生成等任务中表现超越国际头部产品,而训练成本仅为传统模型的几十分之一。这一突破的核心在于三大技术创新:MoE架构升级:通过部署256个细粒度专家网络,减少知识冗余,提升模型效率;MLA注意力机制:动态压缩推理过程中的缓存需求,降低GPU内存
- Manus Xsens Metagloves专用动捕手套
宋13810279720
数据手套机器人人工智能人机交互云计算
ManusXsensMetagloves新一代手指捕捉XsensMetagloves经过专门开发,可与XsensMVN软件无缝协作。只需点击一下,即可将精确的量子手指跟踪添加到Xsens设置中。手指追踪的全新黄金标准我们的新跟踪系统为Xsens套装提供了富有表现力的手指数据。使用我们精确的量子追踪技术捕捉每一个细节动作。手指捕捉从此不再有任何限制。帮助用户再制作动画时节省宝贵的时间,同时不会失去动
- Deepseek详细的自我介绍
welcome_123_
人工智能
###**DeepSeek:中国自研AGI大模型的深度解析**---####**1.技术背景与研发理念**DeepSeek由国内顶尖AI科学家团队领衔,核心技术成员来自清华大学、北京大学及国际顶级AI实验室,团队在NLP、分布式训练、模型压缩等领域发表顶会论文超200篇。研发理念聚焦三个核心:-**高效性**:通过模型架构创新(如MoE)实现“小参数量,大性能”。-**可控性**:内置可解释性模块
- (15-3)DeepSeek混合专家模型初探:模型微调
码农三叔
训练RAG多模态)人工智能Deekseep深度学习大模型transformer
3.4模型微调在本项目中,微调脚本文件finetune.py提供了一套全面的工具,用于对DeepSeek-MoE预训练语言模型进行微调。支持加载特定任务的数据、对数据进行预处理和编码,以及通过多种配置选项(如LoRA量化、分布式训练等)对模型进行高效训练。用户可以根据自己的需求,通过命令行参数或配置文件调整微调策略,以优化模型在特定任务或数据集上的性能。3.4.1微调原理在DeepSeek-MoE
- deepseek与gpt,核心原理对比
test猿
gpt
DeepSeek与GPT作为AI大模型,在自然语言处理等领域展现出强大的能力,它们的核心原理对比主要体现在模型架构、训练策略、资源效率以及应用场景优化等方面。一、模型架构DeepSeek混合专家(MoE)框架:DeepSeek采用了混合专家框架,其内部包含多个“专家”子模块,每个子模块专注于不同的任务或数据领域。例如,DeepSeek-R1拥有6710亿参数,但每次仅激活约370亿参数,通过动态选
- 开源大模型性能追平闭源模型技术路径分析
Mr' 郑
开源
(预测实现时间:2025Q2)开源模型进化路径MoE架构稀疏训练分布式RLHF2024突破2023现状2025超越性能反超一、现状对比与瓶颈分析(2024Q3)1.核心差距量化指标能力维度闭源模型均值开源模型均值差距比例复杂推理(MMLU)86.7%79.2%8.7%代码生成(HumanEval)89.1%81.4%8.5%长文本理解(NarrativeQA)82.3%73.9%10.2%多模态理
- android sensorhub框架,sensorhub-cloud-iot
Jack遇见冰山
androidsensorhub框架
HowtobecomeacontributorandsubmityourowncodeContributorLicenseAgreementsWe'dlovetoacceptyoursampleappsandpatches!Beforewecantakethem,wehavetojumpacoupleoflegalhurdles.Pleasefillouteithertheindividualor
- redis的哨兵模式和集群模式
阿湯哥
redis数据库缓存
Redis的哨兵模式(SentinelMode)和集群模式(ClusterMode)是两种常见的高可用部署方式,它们各有优缺点,适用于不同的场景。以下是它们的比较:1.哨兵模式(SentinelMode)优点:高可用性:哨兵模式通过监控主从节点,自动实现故障转移(Failover),当主节点宕机时,哨兵会自动将一个从节点提升为新的主节点。配置简单:相比集群模式,哨兵模式的配置和管理相对简单,适合中
- 图论练习题(存起来练)
Wuliwuliii
图论练习题
=============================以下是最小生成树+并查集======================================【HDU】1213HowManyTables基础并查集★1272小希的迷宫基础并查集★1325&&poj1308IsItATree?基础并查集★1856Moreisbetter基础并查集★1102ConstructingRoads基础最小生成
- 【HDOJ图论题集】【转】
aiyuneng5167
java人工智能
1=============================以下是最小生成树+并查集======================================2【HDU】31213HowManyTables基础并查集★41272小希的迷宫基础并查集★51325&&poj1308IsItATree?基础并查集★61856Moreisbetter基础并查集★71102ConstructingRoad
- 图论500题
Dillonh
迷之图论
PS:没找到这套题的原作者,非常感谢他的总结~最小生成树+并查集【HDU】1213HowManyTables基础并查集★1272小希的迷宫基础并查集★1325&&poj1308IsItATree?基础并查集★1856Moreisbetter基础并查集★1102ConstructingRoads基础最小生成树★1232畅通工程基础并查集★1233还是畅通工程基础最小生成树★1863畅通工程基础最小生
- 超火的Deepseek的MOE架构是什么?
魔王阿卡纳兹
大模型知识札记架构DeepSeekMoE大模型
DeepSeek的MOE(MixtureofExperts,混合专家)架构是一种基于专家模型(MixtureofExperts)的深度学习框架,旨在通过动态选择和激活部分专家模块来提高计算效率和模型性能。以下是对其核心特点和工作原理的详细介绍:1.核心概念与架构MOE架构的基本思想是将模型划分为多个“专家”模块,每个专家专注于处理特定类型的任务或数据特征。在推理时,通过门控机制(GatingMec
- 大语言模型原理基础与前沿 通过稀疏MoE扩展视觉语言模型
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿通过稀疏MoE扩展视觉语言模型1.背景介绍在人工智能领域,语言模型和视觉模型的结合已经成为一个重要的研究方向。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等,已经在自然语言处理(NLP)任务中取得了显著的成果。而视觉语言模型(Vision-LanguageModels,VLMs)则通过结合视觉和语言信息,进一步提升了模型在多模态任务中
- DVSI使用SenseGlove为开发虚拟现实场景技能培训
Axis tech
vr
虚拟现实场景技能培训能够有效提升被培训者的技能熟练度,使其在现实世界中经历类似事件时第一时间做出正确反映,从而大大降低因缺乏相关技能经验所造成的财产、人员、时间损失。DVSI(DigitalVoiceSystemsInc)是一家美国数字化转型解决方案供应商,为全球各地的指挥中心、技术实验室、智能工作环境等提供尖端的视听解决方案。DVSI致力于设计智能数字环境和身临其境的探索体验,以推动业务成果并提
- Deepseek的MOE架构中ColumnParallelLinear()是怎么实现的
DukeYong
架构
我记得在PyTorch中,模型并行通常涉及到将模型的层分布到不同的GPU上。ColumnParallelLinear可能指的是将线性层的列(即输出神经元)分布在多个设备上。在MoE中,每个专家可能是一个这样的并行层,然后通过门控机制将输入路由到不同的专家。接下来,我需要思考ColumnParallelLinear的具体实现。通常,这种并行线性层会在前向传播时将输入数据分发到各个设备,每个设备处理一
- 100.10 AI量化面试题:AI大模型中的MOE架构主要类型,和DeepSeek使用了哪一种类型?
AI量金术师
金融资产组合模型进化论人工智能架构金融lstmpython机器学习
目录0.承前1.解题思路1.1基础概念维度1.2架构对比维度1.3实践应用维度2.标准MOE架构2.1基本概念3.稀疏MOE架构3.1实现原理4.共享专家稀疏MOE架构4.1核心设计5.架构对比5.1主要特点对比5.2DeepSeek的选择6.回答话术0.承前本文通过通俗易懂的方式介绍MOE(混合专家系统)架构的几种变体,包括标准MOE、稀疏MOE和共享专家稀疏MOE,并分析它们的异同。如果想更加
- 大模型笔记:pytorch实现MOE
UQI-LIUWJ
pytorch学习笔记pytorch人工智能
0导入库importtorchimporttorch.nnasnnimporttorch.nn.functionalasF1专家模型#一个简单的专家模型,可以是任何神经网络架构classExpert(nn.Module):def__init__(self,input_size,output_size):super(Expert,self).__init__()self.fc=nn.Linear(i
- 最通俗易懂的方式,由浅入深地讲讲DeepSeek(深度求索)
Jing_saveSlave
AIaichatgptAI编程
一、DeepSeek是什么?简单说,DeepSeek是一家专注做通用人工智能(AGI)的中国公司,目标就是让AI能像人类一样理解、推理、解决复杂问题。它最核心的产品是大语言模型(你可以理解为"超级聊天机器人"),比如DeepSeek-R1、DeepSeek-MoE等。二、发展历程:从成立到行业黑马成立初期(2023年前)公司早期主要在技术积累,研究如何让AI模型更聪明、更高效。他们发现传统的大模型
- DeepSeek-V3:模型与权重全面解析
步子哥
AGI通用人工智能人工智能
DeepSeek-V3是一款开创性的混合专家(Mixture-of-Experts,MoE)语言模型,以其创新的架构设计、高效的训练方法和卓越的性能,成为开源大语言模型领域的标杆。本文将详细解析其模型架构、权重结构和量化技术,并结合其在实际应用中的表现,带您全面了解DeepSeek-V3的技术亮点。1.模型概述DeepSeek-V3是一款拥有6710亿总参数和每个令牌激活370亿参数的混合专家语言
- DeepSeek V3 两周使用总结
AI生成曾小健
LLM大语言模型Deepseek原理与使用人工智能
DeepSeekV3两周使用总结机器学习AI算法工程2025年01月25日10:10广西向AI转型的程序员都关注公众号机器学习AI算法工程2024年12月26日,杭州深度求索人工智能基础技术研究有限公司发布DeepSeek-V3大模型。官方宣称:(1)基于自研的MoE模型和671B参数,在14.8Ttoken上进行了预训练;(2)多项评测成绩超越了Qwen2.5-72B和Llama-3.1-405
- 使用RT-Thread Studio DIY 迷你桌面时钟(三)| 获取NTP时间(at_device软件包 + netutils软件包)----基于stm32f103rct6
杜嗨皮
c语言
先参考官方的文章使用RT-ThreadStudioDIY迷你桌面时钟(三)|获取NTP时间(at_device软件包+netutils软件包)_Mculover666的博客-CSDN博客1.项目进度桌面Mini时钟项目用来演示如何使用RT-ThreadStduio开发项目,整个项目的架构如下:在上一篇博文中简单的介绍了RT-ThreadStudio一站式工具,基于STM32L431RCT6这个芯片
- DeepSeek-MoE-16b:高效稀疏架构引领大模型降本增效革命
热爱分享的博士僧
架构
一、模型定位与技术背景DeepSeek-MoE-16b是深度求索(DeepSeek)研发的混合专家模型(MixtureofExperts,MoE),参数规模160亿,旨在通过稀疏化计算架构解决传统稠密模型(如Llama2、GPT-3)的高训练与推理成本问题。其设计理念为“高效激活,精准分配”,在保持模型性能的同时,显著降低算力需求,推动大模型普惠化部署。二、核心技术架构动态专家路由机制模型包含12
- 云上一键部署 DeepSeek-V3 模型,阿里云PAI Model Gallery 最佳实践
DeepSeek-V3模型简介DeepSeek-V3是DeepSeek发布的MoE(Mixture-of-Experts)大语言模型,总参数量为6710亿,每个token激活的参数量为370亿。为了实现高效的推理和成本效益的训练,DeepSeek-V3采用了MLA(Multi-headLatentAttention)和DeepSeekMoE架构。此外,DeepSeek-V3首次引入了一种无需辅助损
- DeepSeek-v3笔记(1)
蒸土豆的技术细节
笔记
v3链接直接从第二章Architecture开始2.1BasicArchitecture基本方法就是v2的那一套,仍然是moe架构,采用MLA降显存,常驻专家和路由专家的混合使用。与v2不同的是,这里用了更加强力的路由平衡算法,叫Auxiliary-Loss-FreeLoadBalancing。它主要解决不同routeexpert训练不平衡问题,思路就是谁训得少了就把谁被选中的概率抬高。至于MLA
- 【AI学习】DeepSeek为什么强?
bylander
AI学习人工智能学习gpt
个人的一些思考,请大家批评指正。这个问题,首先当然是在恰当的时间出现,模型性能跻身世界一流,又开源,戳破了OpenAI和英伟达潜心构造的叙事逻辑。DeepSeek为什么强?四个方面:模型的智能水平、训练成本、推理成本和用户体验。一、DeepSeek的智能水平DeepSeekV3的智能水平,技术报告展现的性能对比图:是什么导致了DeepSeek的模型性能,是模型架构吗?MoE、MLA这些?或许有一点
- 递归构建行政区域树
Distance失落心
javajava开发语言后端ide算法
概述实际开发中,有时需要自己构建出一颗行政区域树或某个组织的组织架构树,如北京市-朝阳区、北京市-海淀区、上海市-松江区等,这种需求一般用递归实现较为简单、易理解。说明以下代码中提供的各个行政区域的编码为方便起见是自定义的,真实项目中可能需要爬取第三方网站的真实数据获得。(各个行政区的编码是统一规定的)实现packagecom.lovehena.bilibili.recursion;importc
- DeepSeek和ChatGPT的优劣或者区别(答案来DeepSeek和ChatGPT)
笑傲江湖2023
chatgpt人工智能
DeepSeek的答案DeepSeek与ChatGPT作为当前两大主流AI模型,在架构设计、性能表现、应用场景等方面存在显著差异,以下从多个维度进行对比分析:一、架构与训练效率架构设计DeepSeek:采用混合专家(MoE)框架,总参数达6710亿(活跃参数370亿),通过动态分配专家模块提升任务处理效率,资源消耗较低113。ChatGPT:基于Transformer架构,参数规模估计约1万亿,依
- MoE揭秘
9命怪猫
软件架构AI人工智能ai
众所周不知,2025年春节爆火的DeepSeek用了MoE架构,本人才疏学浅,想从技术角度深入讲解MoE(混合专家系统)的各个方面,包括数据准备、训练、部署、调用时的专家调度、缓存机制等,同时扩展一些相关的技术细节和实际工程中的挑战与解决方案。1.数据准备MoE的数据准备需要根据任务的特点进行设计,尤其是因为MoE的核心思想是“专家分工”,所以数据的分布和特性对模型的效果至关重要。(1)数据分布与
- xml解析
小猪猪08
xml
1、DOM解析的步奏
准备工作:
1.创建DocumentBuilderFactory的对象
2.创建DocumentBuilder对象
3.通过DocumentBuilder对象的parse(String fileName)方法解析xml文件
4.通过Document的getElem
- 每个开发人员都需要了解的一个SQL技巧
brotherlamp
linuxlinux视频linux教程linux自学linux资料
对于数据过滤而言CHECK约束已经算是相当不错了。然而它仍存在一些缺陷,比如说它们是应用到表上面的,但有的时候你可能希望指定一条约束,而它只在特定条件下才生效。
使用SQL标准的WITH CHECK OPTION子句就能完成这点,至少Oracle和SQL Server都实现了这个功能。下面是实现方式:
CREATE TABLE books (
id &
- Quartz——CronTrigger触发器
eksliang
quartzCronTrigger
转载请出自出处:http://eksliang.iteye.com/blog/2208295 一.概述
CronTrigger 能够提供比 SimpleTrigger 更有具体实际意义的调度方案,调度规则基于 Cron 表达式,CronTrigger 支持日历相关的重复时间间隔(比如每月第一个周一执行),而不是简单的周期时间间隔。 二.Cron表达式介绍 1)Cron表达式规则表
Quartz
- Informatica基础
18289753290
InformaticaMonitormanagerworkflowDesigner
1.
1)PowerCenter Designer:设计开发环境,定义源及目标数据结构;设计转换规则,生成ETL映射。
2)Workflow Manager:合理地实现复杂的ETL工作流,基于时间,事件的作业调度
3)Workflow Monitor:监控Workflow和Session运行情况,生成日志和报告
4)Repository Manager:
- linux下为程序创建启动和关闭的的sh文件,scrapyd为例
酷的飞上天空
scrapy
对于一些未提供service管理的程序 每次启动和关闭都要加上全部路径,想到可以做一个简单的启动和关闭控制的文件
下面以scrapy启动server为例,文件名为run.sh:
#端口号,根据此端口号确定PID
PORT=6800
#启动命令所在目录
HOME='/home/jmscra/scrapy/'
#查询出监听了PORT端口
- 人--自私与无私
永夜-极光
今天上毛概课,老师提出一个问题--人是自私的还是无私的,根源是什么?
从客观的角度来看,人有自私的行为,也有无私的
- Ubuntu安装NS-3 环境脚本
随便小屋
ubuntu
将附件下载下来之后解压,将解压后的文件ns3environment.sh复制到下载目录下(其实放在哪里都可以,就是为了和我下面的命令相统一)。输入命令:
sudo ./ns3environment.sh >>result
这样系统就自动安装ns3的环境,运行的结果在result文件中,如果提示
com
- 创业的简单感受
aijuans
创业的简单感受
2009年11月9日我进入a公司实习,2012年4月26日,我离开a公司,开始自己的创业之旅。
今天是2012年5月30日,我忽然很想谈谈自己创业一个月的感受。
当初离开边锋时,我就对自己说:“自己选择的路,就是跪着也要把他走完”,我也做好了心理准备,准备迎接一次次的困难。我这次走出来,不管成败
- 如何经营自己的独立人脉
aoyouzi
如何经营自己的独立人脉
独立人脉不是父母、亲戚的人脉,而是自己主动投入构造的人脉圈。“放长线,钓大鱼”,先行投入才能产生后续产出。 现在几乎做所有的事情都需要人脉。以银行柜员为例,需要拉储户,而其本质就是社会人脉,就是社交!很多人都说,人脉我不行,因为我爸不行、我妈不行、我姨不行、我舅不行……我谁谁谁都不行,怎么能建立人脉?我这里说的人脉,是你的独立人脉。 以一个普通的银行柜员
- JSP基础
百合不是茶
jsp注释隐式对象
1,JSP语句的声明
<%! 声明 %> 声明:这个就是提供java代码声明变量、方法等的场所。
表达式 <%= 表达式 %> 这个相当于赋值,可以在页面上显示表达式的结果,
程序代码段/小型指令 <% 程序代码片段 %>
2,JSP的注释
<!-- -->
- web.xml之session-config、mime-mapping
bijian1013
javaweb.xmlservletsession-configmime-mapping
session-config
1.定义:
<session-config>
<session-timeout>20</session-timeout>
</session-config>
2.作用:用于定义整个WEB站点session的有效期限,单位是分钟。
mime-mapping
1.定义:
<mime-m
- 互联网开放平台(1)
Bill_chen
互联网qq新浪微博百度腾讯
现在各互联网公司都推出了自己的开放平台供用户创造自己的应用,互联网的开放技术欣欣向荣,自己总结如下:
1.淘宝开放平台(TOP)
网址:http://open.taobao.com/
依赖淘宝强大的电子商务数据,将淘宝内部业务数据作为API开放出去,同时将外部ISV的应用引入进来。
目前TOP的三条主线:
TOP访问网站:open.taobao.com
ISV后台:my.open.ta
- 【MongoDB学习笔记九】MongoDB索引
bit1129
mongodb
索引
可以在任意列上建立索引
索引的构造和使用与传统关系型数据库几乎一样,适用于Oracle的索引优化技巧也适用于Mongodb
使用索引可以加快查询,但同时会降低修改,插入等的性能
内嵌文档照样可以建立使用索引
测试数据
var p1 = {
"name":"Jack",
"age&q
- JDBC常用API之外的总结
白糖_
jdbc
做JAVA的人玩JDBC肯定已经很熟练了,像DriverManager、Connection、ResultSet、Statement这些基本类大家肯定很常用啦,我不赘述那些诸如注册JDBC驱动、创建连接、获取数据集的API了,在这我介绍一些写框架时常用的API,大家共同学习吧。
ResultSetMetaData获取ResultSet对象的元数据信息
- apache VelocityEngine使用记录
bozch
VelocityEngine
VelocityEngine是一个模板引擎,能够基于模板生成指定的文件代码。
使用方法如下:
VelocityEngine engine = new VelocityEngine();// 定义模板引擎
Properties properties = new Properties();// 模板引擎属
- 编程之美-快速找出故障机器
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
public class TheLostID {
/*编程之美
假设一个机器仅存储一个标号为ID的记录,假设机器总量在10亿以下且ID是小于10亿的整数,假设每份数据保存两个备份,这样就有两个机器存储了同样的数据。
1.假设在某个时间得到一个数据文件ID的列表,是
- 关于Java中redirect与forward的区别
chenbowen00
javaservlet
在Servlet中两种实现:
forward方式:request.getRequestDispatcher(“/somePage.jsp”).forward(request, response);
redirect方式:response.sendRedirect(“/somePage.jsp”);
forward是服务器内部重定向,程序收到请求后重新定向到另一个程序,客户机并不知
- [信号与系统]人体最关键的两个信号节点
comsci
系统
如果把人体看做是一个带生物磁场的导体,那么这个导体有两个很重要的节点,第一个在头部,中医的名称叫做 百汇穴, 另外一个节点在腰部,中医的名称叫做 命门
如果要保护自己的脑部磁场不受到外界有害信号的攻击,最简单的
- oracle 存储过程执行权限
daizj
oracle存储过程权限执行者调用者
在数据库系统中存储过程是必不可少的利器,存储过程是预先编译好的为实现一个复杂功能的一段Sql语句集合。它的优点我就不多说了,说一下我碰到的问题吧。我在项目开发的过程中需要用存储过程来实现一个功能,其中涉及到判断一张表是否已经建立,没有建立就由存储过程来建立这张表。
CREATE OR REPLACE PROCEDURE TestProc
IS
fla
- 为mysql数据库建立索引
dengkane
mysql性能索引
前些时候,一位颇高级的程序员居然问我什么叫做索引,令我感到十分的惊奇,我想这绝不会是沧海一粟,因为有成千上万的开发者(可能大部分是使用MySQL的)都没有受过有关数据库的正规培训,尽管他们都为客户做过一些开发,但却对如何为数据库建立适当的索引所知较少,因此我起了写一篇相关文章的念头。 最普通的情况,是为出现在where子句的字段建一个索引。为方便讲述,我们先建立一个如下的表。
- 学习C语言常见误区 如何看懂一个程序 如何掌握一个程序以及几个小题目示例
dcj3sjt126com
c算法
如果看懂一个程序,分三步
1、流程
2、每个语句的功能
3、试数
如何学习一些小算法的程序
尝试自己去编程解决它,大部分人都自己无法解决
如果解决不了就看答案
关键是把答案看懂,这个是要花很大的精力,也是我们学习的重点
看懂之后尝试自己去修改程序,并且知道修改之后程序的不同输出结果的含义
照着答案去敲
调试错误
- centos6.3安装php5.4报错
dcj3sjt126com
centos6
报错内容如下:
Resolving Dependencies
--> Running transaction check
---> Package php54w.x86_64 0:5.4.38-1.w6 will be installed
--> Processing Dependency: php54w-common(x86-64) = 5.4.38-1.w6 for
- JSONP请求
flyer0126
jsonp
使用jsonp不能发起POST请求。
It is not possible to make a JSONP POST request.
JSONP works by creating a <script> tag that executes Javascript from a different domain; it is not pos
- Spring Security(03)——核心类简介
234390216
Authentication
核心类简介
目录
1.1 Authentication
1.2 SecurityContextHolder
1.3 AuthenticationManager和AuthenticationProvider
1.3.1 &nb
- 在CentOS上部署JAVA服务
java--hhf
javajdkcentosJava服务
本文将介绍如何在CentOS上运行Java Web服务,其中将包括如何搭建JAVA运行环境、如何开启端口号、如何使得服务在命令执行窗口关闭后依旧运行
第一步:卸载旧Linux自带的JDK
①查看本机JDK版本
java -version
结果如下
java version "1.6.0"
- oracle、sqlserver、mysql常用函数对比[to_char、to_number、to_date]
ldzyz007
oraclemysqlSQL Server
oracle &n
- 记Protocol Oriented Programming in Swift of WWDC 2015
ningandjin
protocolWWDC 2015Swift2.0
其实最先朋友让我就这个题目写篇文章的时候,我是拒绝的,因为觉得苹果就是在炒冷饭, 把已经流行了数十年的OOP中的“面向接口编程”还拿来讲,看完整个Session之后呢,虽然还是觉得在炒冷饭,但是毕竟还是加了蛋的,有些东西还是值得说说的。
通常谈到面向接口编程,其主要作用是把系统设计和具体实现分离开,让系统的每个部分都可以在不影响别的部分的情况下,改变自身的具体实现。接口的设计就反映了系统
- 搭建 CentOS 6 服务器(15) - Keepalived、HAProxy、LVS
rensanning
keepalived
(一)Keepalived
(1)安装
# cd /usr/local/src
# wget http://www.keepalived.org/software/keepalived-1.2.15.tar.gz
# tar zxvf keepalived-1.2.15.tar.gz
# cd keepalived-1.2.15
# ./configure
# make &a
- ORACLE数据库SCN和时间的互相转换
tomcat_oracle
oraclesql
SCN(System Change Number 简称 SCN)是当Oracle数据库更新后,由DBMS自动维护去累积递增的一个数字,可以理解成ORACLE数据库的时间戳,从ORACLE 10G开始,提供了函数可以实现SCN和时间进行相互转换;
用途:在进行数据库的还原和利用数据库的闪回功能时,进行SCN和时间的转换就变的非常必要了;
操作方法: 1、通过dbms_f
- Spring MVC 方法注解拦截器
xp9802
spring mvc
应用场景,在方法级别对本次调用进行鉴权,如api接口中有个用户唯一标示accessToken,对于有accessToken的每次请求可以在方法加一个拦截器,获得本次请求的用户,存放到request或者session域。
python中,之前在python flask中可以使用装饰器来对方法进行预处理,进行权限处理
先看一个实例,使用@access_required拦截:
?