D |
Dominator |
In graph theory, a node X dominates a node Y if every path from the predefined start node to Y must go through X. If Y is not reachable from the start node then node Y does not have any dominator. By definition, every node reachable from the start node dominates itself. In this problem, you will be given a directed graph and you have to find the dominators of every node where the 0th node is the start node.
As an example, for the graph shown right, 3 dominates 4 since all the paths from 0 to 4 must pass through3. 1 doesn't dominate 3 since there is a path 0-2-3 that doesn't include 1.
The first line of input will contain T (≤ 100) denoting the number of cases.
Each case starts with an integer N (0 < N < 100) that represents the number of nodes in the graph. The next N lines contain N integers each. If the jth(0 based) integer of ith(0 based) line is 1, it means that there is an edge from node i to node j and similarly a 0 means there is no edge.
For each case, output the case number first. Then output 2N+1 lines that summarizes the dominator relationship between every pair of nodes. If node A dominates node B, output 'Y' in cell (A, B), otherwise output 'N'. Cell (A, B) means cell at Ath row and Bth column. Surround the output with |, + and – to make it more legible. Look at the samples for exact format.
Sample Input |
Output for Sample Input |
2 5 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 |
Case 1: +---------+ |Y|Y|Y|Y|Y| +---------+ |N|Y|N|N|N| +---------+ |N|N|Y|N|N| +---------+ |N|N|N|Y|Y| +---------+ |N|N|N|N|Y| +---------+ Case 2: +-+ |Y| +-+ |
Problem Setter: Sohel Hafiz, Special Thanks: Kazi Rakibul Hossain, Jane Alam Jan
n的范围很小,枚举每个点,去掉它相邻的边,然后dfs找从0能到达的所有点,复杂度O(n^3)。需要注意的是 If Y is not reachable from the start node then node Y does not have any dominator.没特判这个wa了一次,然后因为可能有环,dfs时注意走过的点就不要再搜下去了,re一次。
#include <cstdio> #include <algorithm> #include <vector> #include <map> #include <queue> #include <iostream> #include <stack> #include <set> #include <cstring> #include <stdlib.h> #include <cmath> using namespace std; typedef long long LL; typedef pair<int, int> P; const int maxn = 100 + 5; int n; int G[maxn][maxn]; int temG[maxn][maxn]; int vis[maxn]; int ans[maxn][maxn]; void dfs(int x){ vis[x] = 1; for(int i = 0;i < n;i++){ if(temG[x][i] == 1 && vis[i] == 0) dfs(i); } } void print(){ cout << '+'; for(int i = 0;i < 2*n-1;i++) cout << '-'; cout << '+' << endl; } int main(){ int t, kase = 0; scanf("%d", &t); while(t--){ kase++; scanf("%d", &n); for(int i = 0;i < n;i++){ for(int j = 0;j < n;j++){ scanf("%d", &G[i][j]); } } memset(ans, 0, sizeof(ans)); for(int i = 0;i < n;i++){ for(int j = 0;j < n;j++){ for(int k = 0;k < n;k++){ if(j == i || k == i) temG[j][k] = 0; else temG[j][k] = G[j][k]; } } memset(vis, 0, sizeof(vis)); dfs(0); for(int j = 0;j < n;j++){ if(vis[j] == 1){ ans[i][j] = 1; } } } ans[0][0] = 0; for(int i = 0;i < n;i++){ for(int j = 0;j < n;j++) temG[i][j] = G[i][j]; } memset(vis, 0, sizeof(vis)); dfs(0); for(int i = 0;i < n;i++){ for(int j = 0;j < n;j++){ if(vis[i] == 0 || vis[j] == 0){ ans[i][j] = 1; } } } printf("Case %d:\n", kase); print(); for(int i = 0;i < n;i++){ for(int j = 0;j < n;j++){ cout << '|'; if(ans[i][j] == 0) cout << 'Y'; else cout << 'N'; } cout << '|' << endl; print(); } } return 0; }