- [前端算法]动态规划
摇光93
算法算法动态规划
最优子结构,重叠子问题爬楼梯递归+记忆化搜索自顶向下varclimbStairs=function(n){letmap=[]functiondfs(n){if(n=coins[j]){dp[i]=Math.min(dp[i],dp[i-coins[j]]+1);}}}if(dp[amount]===Infinity){return-1;}returndp[amount];}01背包问题functi
- 蓝桥杯备赛笔记(十) 背包问题
小魏´•ﻌ•`
蓝桥杯C++蓝桥杯笔记职场和发展
(1)背包模型有一个体积为V的背包,商店有n个物品,每个物品有一个价值v和体积w,每个物品只能被拿一次,问能够装下物品的最大价值。这里每一种物品只有两种状态,即“拿”或“不拿”。设状态dp[i][j]表示到第i个物品为止,拿的物品总体积为j的情况下的最大价值。转移方程为:dp[i][j]=max(dp[i-1][j],dp[i-1][j-w]+v)如果不拿物品i,那么最大价值就是dp[i-1][j
- 代码随想录训练营第三十八天| 322. 零钱兑换 279.完全平方数 139.单词拆分 背包问题总结篇
chengooooooo
算法
322.零钱兑换题目链接:322.零钱兑换-力扣(LeetCode)讲解链接:代码随想录和昨天做过的零钱对换不太一样昨天的零钱兑换是完全背包里的球排列问题这个是求在指定的背包容量内求最小的组合数动态规划五部曲1定义dp方程我们假设用了dp[j]个硬币去凑j容量的背包要求dp[j]最小2推导递推公式首先最少用j-coins[i]个硬币来凑dp[j-coins[i]]容量的金额(背包)(不加上他本身的
- 关于告警,要想做好,从这些方面着手
各类监控系统都会产生告警事件,于是,就产生了FlashDuty、PagerDuty、Opsgenie这类产品,做告警事件的收敛降噪、排班认领升级等。如果你想增强自己公司的告警事件处理能力,参考(chaoxi)这些产品的功能就可以了。告警集成:目标是在一个Oncall平台上处理所有告警,一般常见的监控工具,都有对接webhook的能力,因此Oncall平台可以对不同监控工具进行接口适配,提供一个相应
- 算法设计与分析第一章课后作业
小毛头~
算法
第一章一.单选题1【单选题】子程序(包括函数和方法)是用来被调用的,递归指的是A、不同子程序之间直接或间接调用的程序设计方法B、同一个子程序直接或间接调用自己的程序设计方法C、子程序向调用它的程序段返回结果的程序设计方法D、子程序不向调用它的程序段返回结果的程序设计方法正确答案:B我的答案:B得分:4.0分2【单选题】背包问题:n个物品和1个背包。对物品i,其价值为vi,重量为wi,背包的容量为W
- 算法第十六期——动态规划(DP)之线性DP
小叶pyか
算法动态规划
【概述】线性动态规划,是较常见的一类动态规划问题,其是在线性结构上进行状态转移,这类问题不像背包问题、区间DP等有固定的模板。线性动态规划的目标函数为特定变量的线性函数,约束是这些变量的线性不等式或等式,目的是求目标函数的最大值或最小值。因此,除了少量问题(如:LIS、LCS、LCIS等)有固定的模板外,大部分都要根据实际问题来推导得出答案。【例题】最长公共子序列(LCS)lanqiao0J题号1
- 第十三届蓝桥杯b组国赛dp问题
鱼香rose__
#蓝桥杯#动态规划蓝桥杯算法c++
第十三届蓝桥杯b组国赛dp问题\Huge{第十三届蓝桥杯b组国赛dp问题}第十三届蓝桥杯b组国赛dp问题刷题的时候发现往年国赛题中有三道dp问题,而且还都是背包问题,正好最近没写过dp,那就简单整理一下,尽量把我思路整理清楚hhh。关于背包问题,可以查看这篇博客:背包九讲——九种背包问题的算法思路+代码分析-CSDN博客题目链接:备赛蓝桥杯-蓝桥云课(lanqiao.cn)文章目录2022题意思路
- ACM刷题——背包问题
Nancy_627
ACM刷题acm竞赛算法
ACM刷题练习——背包问题01背包问题(Java解法)有N件物品和一个容量是V的背包。每件物品只能使用一次。第i件物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。接下来有N行,每行两个整数vi,wi,用空格隔开,分别表示第i件物品的体积和价值。输出格式输出一
- 蓝桥杯刷题第二天——背包问题
XAX520_1314
蓝桥杯蓝桥杯职场和发展python
题目描述有N件物品和一个容量是V的背包。每件物品只能使用一次。第i件物品的体积是Vi价值是Wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。接下来有N行,每行两个整数,W,用空格隔开,分别表示第件物品的体积和价值。输出格式输出一个整数,表示最大价值。数据范围0=v:dp[i][j]=
- Python算法L5:贪心算法
小熊同学哦
Python算法算法python贪心算法
Python贪心算法简介目录Python贪心算法简介贪心算法的基本步骤贪心算法的适用场景经典贪心算法问题1.**零钱兑换问题**2.**区间调度问题**3.**背包问题**贪心算法的优缺点优点:缺点:结语贪心算法(GreedyAlgorithm)是一种在每一步选择中都采取当前最优或最优解的算法。它的核心思想是,在保证每一步局部最优的情况下,希望通过贪心选择达到全局最优解。虽然贪心算法并不总能得到全
- 2024年CSP-J初赛备考建议
再临TSC
c++杂谈c++学习
针对2024年CSP-J(ComputerSciencePrinciplesJunior,即计算机科学原理初级认证)的备考,首先,先来看考试可能考的东西:动规(包括背包问题),主要在程序阅读还有程序补全题考,这方面,了解动规的原理就可以轻松拿分高精,也是在阅读和补全题,了解原理即可,Z2~Z3应该就学高精了深搜广搜,基础题可能会给你一个片段,然后问你这是什么算法,或者,问你下列选项中哪个正确,给你
- 数据结构与算法 - 贪心算法
临界点oc
数据结构与算法贪心算法算法
一、贪心例子贪心算法或贪婪算法的核心思想是:1.将寻找最优解的问题分为若干个步骤2.每一步骤都采用贪心原则,选取当前最优解3.因为没有考虑所有可能,局部最优的堆叠不一定让最终解最优贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。这种算法通常用于求解优化问题,如最小生成树、背包问题等。贪心算法的应用:1.背包问题:给定一组物品和一个背包
- 数学建模笔记——动态规划
liangbm3
数学建模笔记数学建模笔记动态规划python背包问题算法优化问题
数学建模笔记——动态规划动态规划1.模型原理2.典型例题2.1例1凑硬币2.2例2背包问题3.python代码实现3.1例13.2例2动态规划1.模型原理动态规划是运筹学的一个分支,通常用来解决多阶段决策过程最优化问题。动态规划的基本想法就是将原问题转换为一系列相互联系的子问题,然后通过逐层地推来求得最后的解。目前,动态规划常常出现在各类计算机算法竞赛或者程序员笔试面试中,在数学建模中出现的相对较
- 力扣494-目标和(Java详细题解)
Calebcode.
重生之我在lc刷算法leetcodejava算法
题目链接:494.目标和-力扣(LeetCode)前情提要:因为本人最近都来刷dp类的题目所以该题就默认用dp方法来做。最近刚学完01背包,所以现在的题解都是以01背包问题为基础再来写的。如果大家不懂01背包的话,建议可以去学一学,01背包问题可以说是背包问题的基础。如果大家感兴趣,我后期可以出一篇专门讲解01背包问题。dp五部曲。1.确定dp数组和i下标的含义。2.确定递推公式。3.dp初始化。
- HDU - 1398 完全背包问题求方案数
tran_sient
算法以及模板完全背包求方案数
题目描述:ProblemDescriptionPeopleinSilverlandusesquarecoins.Notonlytheyhavesquareshapesbutalsotheirvaluesaresquarenumbers.Coinswithvaluesofallsquarenumbersupto289(=17^2),i.e.,1-creditcoins,4-creditcoins,9
- AcWing 532. 货币系统 多重背包问题的变形
罚时大师月色
算法提高课
AcWing532.货币系统在网友的国度中共有 n 种不同面额的货币,第 i 种货币的面额为 a[i],你可以假设每一种货币都有无穷多张。为了方便,我们把货币种数为 n、面额数组为 a[1…n] 的货币系统记作 (n,a)。在一个完善的货币系统中,每一个非负整数的金额 x 都应该可以被表示出,即对每一个非负整数 x,都存在 n 个非负整数 t[i] 满足 a[i]×t[i] 的和为 x。然而,在网
- 动态规划算法之背包问题详细解读(附带Java代码解读)
南城花随雪。
算法分析算法动态规划
动态规划中的背包问题(KnapsackProblem)是经典问题之一,通常用来解决选择一组物品放入背包使得背包的价值最大化的问题。根据问题条件的不同,背包问题有很多种变体,如0-1背包问题、完全背包问题、多重背包问题等。这里,我们详细介绍最经典的0-1背包问题,并提供代码的详细解读。1.0-1背包问题简介在0-1背包问题中,有一个容量为C的背包和n件物品。每件物品有两个属性:重量w[i]和价值v[
- HDU 1573X问题(扩展中国剩余定理)
数学收藏家
数据结构算法
ProblemDescription求在小于等于N的正整数中有多少个X满足:Xmoda[0]=b[0],Xmoda[1]=b[1],Xmoda[2]=b[2],…,Xmoda[i]=b[i],…(0usingnamespacestd;#defineintlonglong#defineendl'\n'#defineIOSios::sync_with_stdio(false);cin.tie(0);c
- c++使用动态规划求解01背包问题
苓一在学习
算法c++
-什么是01背包问题?在01背包问题中,因为每种物品只有一个,对于每个物品只需要考虑选与不选两种情况。如果不选择将其放入背包中,则不需要处理。如果选择将其放入背包中,由于不清楚之前放入的物品占据了多大的空间,需要枚举将这个物品放入背包后可能占据背包空间的所有情况。需要注意的是:01背包问题不能使用贪心思想,因为每次选取最大的并不能保证背包刚好装满,遇到01背包问题先找到题目中的“背包”和“物品”,
- 01背包问题C++
znyee07
c++c++蓝桥杯c语言动态规划
1.问题简述:有N件物品和一个容量是V的背包,每件物品只能使用一次。第i件物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大2.朴素解法及优化:定义状态f[i][j]表示:前i件物品当体积不超过j时的所有选法的集合状态方程f[i][j]的状态转移关键在于第i件物品选或不选;不选第i件时f[i][j]=f[i-1][j];选第i件时f[i][j]=
- 个人关于背包问题的总结(一)
Saber—Lily
背包问题总结笔记
一.前言背包问题是动态规划的一个巨大的分支,常见的背包问题都有相对的模版,个人认为如果只是会背板子是下下之策,从长远的角度来看是不可取的,因此我想在这里分享一些个人对于背包问题的理解(会有借鉴其他大牛地方,逃~)同时如果我有一些不正的确的地方也欢迎大家和我交流。希望能加深大家对背包问题的理解,二.01背包问题理解以及常见的例题1.01背包的分析以及理解动态规划(dp)问题的一般求解步骤概括如下1.
- 动态规划:一和零题目分析
小希与阿树
动态规划算法
法一:三维dp数组(容易理解,但空间复杂度较高)本题的含义是从strs数组中选取子集,使其子集的个数最大,限制条件是所有子集中0和1的个数总和有要求,因此可以转化为01背包问题,从字符串数组中任取子集(每个元素只能取一次),限制条件是所取子集数组的0和1的个数总和。确定dp数组及其下标含义:dp[i][j][k]表示从下标0~i的字符串数组中任取字符串放入背包含有j个0和k个1的字符串个数,其中d
- HDU2196Computer 树形dp
Vibrant
传送门解法1树的直径参考博客#include//树的直径#defineMAXN10010usingnamespacestd;typedefpairP;intdis[MAXN],Max,root;vectora[MAXN];voidInit(intn){Max=0;for(inti=1;iMax)Max=sum,root=now;for(inti=0;i//记忆化搜索#defineMAXN10010
- C++---背包模型---潜水员(每日一道算法2023.3.13)
SRestia
算法算法c++动态规划
注意事项:本题是"动态规划—01背包"和"背包模型—二维费用的背包问题"的扩展题,优化思路不多赘述,dp思路会稍有不同,下面详细讲解。题目:潜水员为了潜水要使用特殊的装备。他有一个带2种气体的气缸:一个为氧气,一个为氮气。让潜水员下潜的深度需要各种数量的氧和氮。潜水员有一定数量的气缸。每个气缸都有重量和气体容量。潜水员为了完成他的工作需要特定数量的氧和氮。他完成工作所需气缸的总重的最低限度的是多少
- 常见的算法底层思想
qinbaby
算法
1.分治法思想:将一个大问题分解成若干个规模较小的相同问题,递归求解子问题,最后合并子问题的解得到原问题的解。例子:快速排序、归并排序、二分查找。2.动态规划思想:将原问题分解为若干个相互重叠的子问题,通过解决子问题来构建原问题的解,并存储子问题的解以避免重复计算。例子:斐波那契数列、最长公共子序列、背包问题。3.贪心算法思想:在每一步选择中都采取在当前状态下最好或最优的选择,从而希望导致结果是全
- 416.分割等和子集
纯白色的少云
动态规划
416.分割等和子集给你一个只包含正整数的非空数组nums。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。示例1:输入:nums=[1,5,11,5]输出:true解释:数组可以分割成[1,5,5]和[11]。示例2:输入:nums=[1,2,3,5]输出:false解释:数组不能分割成两个元素和相等的子集。思路回溯是一种解法,但是会超时。另一种将其转换成背包问题,nums数
- 使用Python计算平面多边形间最短距离,数据需要从exce
Buoluochuixue
java
使用Python计算平面多边形间最短距离,数据需要从exce使用Python计算平面多边形间最短距离,数据需要从excel表格中导入,*多边形种类包括(圆形、矩形、六边形、五边形、跑道形/胶囊形),*Python代码题解|#[SCOI2009]粉刷匠#//分组背包问题,首先考虑一个木板的情况://对于一个木板而言:dp[i][j],i表示当前是第i次粉刷,粉刷第j块格子的情况。//那么得到状态转移
- 0-1背包问题
能力越小责任越小YA
算法算法动态规划c++
问题描述:N种物品,每种物品只有1个,每个物品有自己的重量和价值,有一个最多只能放重量为M的背包。问:这个背包最多能装价值为多少的物品?二维dp数组解法:dp数组的含义:dp[i][j]表示下标为0-i(物品的编号)之间的物品任取,放进容量为j的背包里的最大价值;递推公式:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]);初始化:dp[i
- 完全背包&多重背包问题(动态规划)
能力越小责任越小YA
算法算法动态规划c++
完全背包问题:每个物品使用次数没有限制,与0-1背包的不同之处在于遍历背包的顺序是正序。#includeusingnamespacestd;intmain(){intn,v;cin>>n>>v;vectorweight(n),values(n),dp(v+1,0);//dp[j]:容量为j的背包的最大价值for(inti=0;i>weight[i]>>values[i];}for(inti=0;i
- acwing完全背包问题
CodeWizard~
算法深度优先图论c++数据结构
acwing完全背包问题题目:有N种物品和一个容量是V的背包,每种物品都有无限件可用。第i种物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。接下来有N行,每行两个整数vi,wi,用空格隔开,分别表示第i种物品的体积和价值。输出格式输出一个整数,表示最大价值。
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla