http://www.cnblogs.com/btchenguang/archive/2012/09/17/2689146.html
http://bbs.chinaunix.net/thread-1812710-1-1.html
类对象和类实例访问属性的第一步操作都是一样的 都是先先从 MRO列表搜索出 对应属性class.dict中,然后。。。
(descriptor的实例自己访问自己是不会触发__get__,而会触发__call__,只有descriptor作为其它类的属性才有意义
Python中的成员变量 Descriptor是什么?简而言之,Descriptor是用来定制访问类或实例的成员的一种协议。额。。好吧,一句话是说不清楚的。下面先介绍一下Python中成员变量的定义和使用。 我们知道,在Python中定义类成员和C/C++相比得到的结果具有很大的差别。如下面的定义: 而Python中类似的定义如下: 在上面的定义中,C++定义了一个类型,所有该类型的对象都包含有一个成员整数i和函数func;而Python则创建了一个名为Pclass、类型(__class__)为type(详情请参见MetaClass,Python中一切皆为对象,类型也不例外)的对象,然后再创建一个名为p、类型为Pclass的对象。如下所示: p和Pclass各自包含了一些成员,如下所示: 其中,带有双下划线的成员为特殊成员,或者可以称之为固定成员(和__slots__定义的成员类似),这些成员变量的值可以被改变,但不能被删除(del)。其中,__class__变量为对象所属的类型,__doc__为对象的文档字符串。有一个特殊成员值得注意:__dict__,该字典中保存了对象的自定义变量。相信大家在初学Python对于其中对象可以任意增加删除成员变量的能力感到惊讶,其实这个功能的玄机就在于__dict__成员中(注意type的__dict__为dictproxy类型): 通过上面的演示可以很清楚地看出:Python将对象的自定义成员以键值对的形式保存到__dict__字典中,而前面提到的类型定义只是这种情况的语法糖而已,即上面的类型定义等价于以下形式的定义: 访问成员变量时,Python也是从__dict__字典中取出变量名对应的值,如下形式的两种访问形式是等价的——在Descriptor被引入之前: Descriptor的引入即将改变上面的规则,且看下文分解。 定义:Descriptor Protocol Descriptor如何改变对象成员的访问规则呢?根据计算机理论中“绝大多数软件问题都可以用增加一个中间层的方式解决”这一名言,我们需要为对象访问提供一个中间层,而非直接访问所需的对象。实现这一中间层的方式是定义Descriptor协议。Descriptor的定义很简单,如果一个类包含以下三个方法(之一),则可以称之为一个Descriptor: object.__get__(self, instance, owner) 成员被访问时调用,instance为成员所属的对象、owner为instance所属的类型 object.__set__(self, instance, value) 成员被赋值时调用 object.__delete__(self, instance) 成员被删除时调用 如果我们需要改变一个对象在其它对象中的访问规则,需要将其定义成Descriptor,之后在对该成员进行访问时将调用该Descriptor的相应函数。下面是一个使用Descriptor改变访问规则的例子: 从例子中可以看出:当我们对对象成员进行引用(Reference)、赋值(Assign)和删除(Dereference)操作时,如果对象成员为一个Descriptor,则这些操作将执行该Descriptor对象的相应成员函数。以上约定即为Descriptor协议。 obj.name背后的魔法 引入了Descriptor之后,Python对于对象成员访问的规则是怎样的呢?在回答这一问题之前,需要对Descriptor进行简单的划分: Overriding或Data:对象同时提供了__get__和__set__方法 Nonoverriding或Non-Data:对象仅提供了__get__方法 (__del__方法表示自己被忽略了,很伤心~) 下面是从一个类对象中访问其成员(如C.name)的规则: 如果“name”在C.__dict__能找到,C.name将访问C.__dict__['name'],假设为v。如果v是一个Descriptor,则返回type(v).__get__(v, None, C),否则直接返回v; 如果“name”不在C.__dict__中,则向上查找C的父类,根据MRO(Method Resolution Order)对C的父类重复第一步; 还是没有找到“name”,抛出AttributeError异常。 从一个类实例对象中访问其成员(如x.name,type(x)为C)要稍微复杂一些: 如果“name”能在C(或C的父类)中找到,且其值v为一个Overriding Descriptor,则返回type(v).__get__(v, x, C)的值; 否则,如果“name”能在x.__dict__中找到,则返回x.__dict__['name']的值; 如果“name”仍未找到,则执行类对象成员的查找规则; 如果C定义了__getattr__函数,则调用该函数;否则抛出AttributeError异常。 成员赋值的查找规则与访问规则类似,但还是有一点区别:对类成员执行赋值操作时将直接设置C.__dict__中的值,而不会调用Descriptor的__set__函数。 以上面的代码为例,当访问C.d时,Python将在C.__dict__中找到d,并且发现d是一个Descriptor,因此将调用d.__get__(None, C);当访问c.d时,Python首先查找C,并且在其中发现d的定义,且d为一个Overriding Descriptor,因此执行d.__get__(c, C)。 前面介绍了Descriptor的一些细节,那么Descriptor的作用是什么呢?在Python中,Descriptor主要用来实现一些Python本身的功能,如类方法调用、staticmethod和Property等。下面将对这些使用Descriptor进行类方法调用的实现进行介绍。 Bound & Unbound Method 在python中,函数是第一级的对象,即其本质与其它对象相同,差别在于函数对象是callable对象,即对于函数对象f,可以用语法f()来调用函数。上面提到的对象成员访问规则,对于函数来说是完全一样的。Python在实现成员函数调用时obj.f()时,会执行一下两个步骤: 根据对象成员访问规则获取函数对象; 用函数对象执行函数调用; 为了验证上述过程,我们可以执行以下代码: 小结 Descriptor是访问对象成员时的一个中间层,为我们提供了自定义对象成员访问的方式。通过对Descriptor的探索,对原来的一些看似神秘的概念顿时有种豁然开朗的感觉: 类方法调用:编译器并没有为其提供专门的语法规则,而是使用Descriptor返回instancemethod来封装func,从而实现类似obj.func()的调用方式; staticmethod:decorator将创建一个StaticMethod并在其中保存func对象,StaticMethod是一个Descriptor,其__get__函数中返回前面所保存的func对象; Property:创建一个Property对象,在其__get__、__set__和__delete__方法中分别执行构造对象是传入的fget、fset、和fdel函数。现在知道为什么Property只提供这三个函数作为参数么。。 最后一个问题是,Python引入Descriptor之后的性能会不会有影响?性能影响是必须的:每次访问成员时的查找规则,之后再调用Descriptor的__get__函数,如果是方法调用的话之后才是执行真正的函数调用。每次访问对象成员时都要经历以上过程,对Python的性能应该会有较大的影响。但是,在Python的世界,貌似Pythonic才是被关注的重点,性能神马的就别提了。。 |