链接:http://poj.org/problem?id=1966
题意:有线电视网络中,中继器的连接是双向的。如果网络中任何两个中继器之间至少有一条路,则中继器网络称为是连通的,否则中继器网络是不连通的。一个空的网络、以及只有一个中继器的网络被认为是连通的。具有n 个中继器的网络的安全系数f 被定义成:
(1) f 为n,如果不管删除多少个中继器,剩下的网络仍然是连通的;
(2) f 为删除最少的顶点数,使得剩下的网络不连通。
现在给定一个有线电视网络,求 f 为多少。
思路:一张连通图,求最少删去多少个点,能够使得该图不再连通,这是无向图的顶点连通度问题。
无向图的点连通度:
1. 将每个点u拆为u', u''.顶点u'到u''连一条弧,容量为1。
2. 将图中的每条边(u, v)拆成<u'', v'>和<v'', u'>两条边,每条边的容量为INF。
3. 选一个源点A'', 枚举汇点B'. 求出最大流的最小值即为点连通度。
4. 所有具有流量1的弧(v', v'')对应的顶点v构成了一个割点集。
代码:
/* ID: [email protected] PROG: LANG: C++ */ #include<map> #include<set> #include<queue> #include<stack> #include<cmath> #include<cstdio> #include<vector> #include<string> #include<fstream> #include<cstring> #include<ctype.h> #include<iostream> #include<algorithm> using namespace std; #define INF (1<<30) #define PI acos(-1.0) #define mem(a, b) memset(a, b, sizeof(a)) #define rep(i, a, n) for (int i = a; i < n; i++) #define per(i, a, n) for (int i = n - 1; i >= a; i--) #define eps 1e-6 #define debug puts("===============") #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((int)(x).size()) #define POSIN(x,y) (0 <= (x) && (x) < n && 0 <= (y) && (y) < m) typedef long long ll; typedef unsigned long long ULL; const int maxn = 1000; const int maxm = 100000; int edge[maxm][2]; struct node { int v; // vertex int cap; // capacity int flow; // current flow in this arc int nxt; } e[maxm * 2]; int g[maxn], cnt; int st, ed, n, m; void add(int u, int v, int c) { e[++cnt].v = v; e[cnt].cap = c; e[cnt].flow = 0; e[cnt].nxt = g[u]; g[u] = cnt; e[++cnt].v = u; e[cnt].cap = 0; e[cnt].flow = 0; e[cnt].nxt = g[v]; g[v] = cnt; } void init(int N) { cnt = 1; st = N; for (int i = 0; i < n; i++) g[i] = 0; int u, v; for (int i = 0; i < N; i++) add(i, i + N, 1); for (int i = 0; i < m; i++) { int u = edge[i][0], v = edge[i][1]; add(v + N, u, INF); add(u + N, v, INF); } } int dist[maxn], numbs[maxn], q[maxn]; void rev_bfs() { int font = 0, rear = 1; for (int i = 0; i <= n; i++) { //n为总点数 dist[i] = maxn; numbs[i] = 0; } q[font] = ed; dist[ed] = 0; numbs[0] = 1; while(font != rear) { int u = q[font++]; for (int i = g[u]; i; i = e[i].nxt) { if (e[i ^ 1].cap == 0 || dist[e[i].v] < maxn) continue; dist[e[i].v] = dist[u] + 1; ++numbs[dist[e[i].v]]; q[rear++] = e[i].v; } } } int maxflow() { rev_bfs(); int u, totalflow = 0; int curg[maxn], revpath[maxn]; for(int i = 0; i <= n; ++i) curg[i] = g[i]; u = st; while(dist[st] < n) { if(u == ed) { // find an augmenting path int augflow = INF; for(int i = st; i != ed; i = e[curg[i]].v) augflow = min(augflow, e[curg[i]].cap); for(int i = st; i != ed; i = e[curg[i]].v) { e[curg[i]].cap -= augflow; e[curg[i] ^ 1].cap += augflow; e[curg[i]].flow += augflow; e[curg[i] ^ 1].flow -= augflow; } totalflow += augflow; u = st; } int i; for(i = curg[u]; i; i = e[i].nxt) if(e[i].cap > 0 && dist[u] == dist[e[i].v] + 1) break; if(i) { // find an admissible arc, then Advance curg[u] = i; revpath[e[i].v] = i ^ 1; u = e[i].v; } else { // no admissible arc, then relabel this vertex if(0 == (--numbs[dist[u]])) break; // GAP cut, Important! curg[u] = g[u]; int mindist = n; for(int j = g[u]; j; j = e[j].nxt) if(e[j].cap > 0) mindist = min(mindist, dist[e[j].v]); dist[u] = mindist + 1; ++numbs[dist[u]]; if(u != st) u = e[revpath[u]].v; // Backtrack } } return totalflow; } int main () { int N; while(~scanf("%d%d", &N, &m)) { n = 2 * N + 4; for (int i = 0; i < m; i++) scanf(" (%d,%d)", edge[i], edge[i] + 1); int ans = INF; for (int i = 1; i < N; i++) { ed = i; init(N); ans = min(ans, maxflow()); } if (ans == INF) ans = N; printf("%d\n", ans); } return 0; }