看不懂数位DP,蒟蒻就是蒟蒻:http://fancypei.github.io/2016/04/16/SDOI2016%20Round1/
然后ZZY Google到了一个神奇的做法,很happy:https://blog.menci.moe/sdoi2016-table/
强力膜拜
考虑异或的性质:
性质一:对于任意 x<2Nx<2N,y<2Ny<2N,必有 (x+2N) xor (y+2N)=x xor y(x+2N) xor (y+2N)=x xor y
性质二:对于任意 x≠yx≠y,必有 x xor z≠y xor zx xor z≠y xor z
性质三:对于任意 x<2Nx<2N,[0,2N−1][0,2N−1] 的所有数与 xx 的异或所得结果取遍 [0,2N−1][0,2N−1] 的所有数。
考虑递归子问题
#include<cstdio> #include<cstdlib> #include<algorithm> #define lowbit(x) ((x)&-(x)) using namespace std; typedef long long ll; inline char nc() { static char buf[100000],*p1=buf,*p2=buf; if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; } return *p1++; } inline void read(ll &x){ char c=nc(),b=1; for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1; for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b; } ll P; inline ll log2(ll x) { ll ret=0; while (x>>=1) ret++; return ret; } inline ll mul(ll x,ll y,ll z=1) { // (x * y) / z, z is 1 or 2; if (z==2) { if (x&1) y>>=1; else if (y&1) x>>=1; } return (x%P)*(y%P)%P; } inline ll Calc(ll first, ll n,ll k,ll t) { first-=k; if (first<1) n-=(1-first),first=1; if (n<=0) return 0; return mul(mul(first+(first+n-1),n,2LL),t); } ll Solve(ll n,ll m,ll K) { if (n==0 || m==0) return 0; if (K<0) K=0; if (n<m) swap(n,m); if (n==m && n==lowbit(n)) return Calc(1,n-1,K,m); ll N=log2(n),M=log2(m); ll W=(1LL<<N),H=(1LL<<M); ll lW,rW,rH,lH,bH,bW,rS,bS,sS,cS,lS; if (N==M) { rW=n-W,rH=H; bW=W,bH=m-H; rS=Calc(W,rH,K,rW); bS=Calc(H,bW,K,bH); sS=Solve(rW,bH,K); cS=Solve(bW,rH,K); return (rS+bS+sS+cS)%P; } else { lW=(1LL<<N),lH=m; rW=n-lW,rH=lH; lS=Calc(0,lW,K,lH); rS=Solve(rW,rH,K-lW); if (lW>K) (rS+=mul(mul(lW-K,m),rW))%=P; return (lS+rS)%P; } } int main() { ll Q,n,m,k; freopen("t.in","r",stdin); freopen("t.out","w",stdout); read(Q); while (Q--) { read(n); read(m); read(k); read(P); printf("%lld\n",Solve(n,m,k)); } return 0; }