题意:给出n个数,分成一些桌,每桌大于3个人,使得每人分别与左右两人的和均为素数,并输出一种方案。。。
解法:源点向偶数连容量为2的边,奇数向汇点连容量为2的边,偶数向能构成素数的奇数连容量为1的边,若最大流则有解。。dfs输出方案。。。
#include <iostream> #include <queue> #include <stack> #include <map> #include <set> #include <bitset> #include <cstdio> #include <algorithm> #include <cstring> #include <climits> #include <cstdlib> #include <cmath> #include <time.h> #define maxn 20005 #define maxm 200005 #define eps 1e-7 #define mod 1000000007 #define INF 0x3f3f3f3f #define PI (acos(-1.0)) #define lowbit(x) (x&(-x)) #define mp make_pair #define ls o<<1 #define rs o<<1 | 1 #define lson o<<1, L, mid #define rson o<<1 | 1, mid+1, R #define pii pair<int, int> #pragma comment(linker, "/STACK:16777216") typedef long long LL; typedef unsigned long long ULL; using namespace std; LL qpow(LL a, LL b){LL res=1,base=a;while(b){if(b%2)res=res*base;base=base*base;b/=2;}return res;} LL powmod(LL a, LL b){LL res=1,base=a;while(b){if(b%2)res=res*base%mod;base=base*base%mod;b/=2;}return res;} //head struct Edge { int v, c, next; Edge(){} Edge(int v, int c, int next) : v(v), c(c), next(next) {} }E[maxm]; struct edge { int v; edge *next; }*h[maxn], EE[maxm], *edges; int H[maxn], cntE; queue<int> q; bool vis[maxn]; int dis[maxn]; int cur[maxn]; int cnt[maxn]; int pre[maxn]; int p[maxn]; int a[maxn]; vector<int> ans[maxn]; int n, m, s, t, flow, nv, Cnt; void addedges(int u, int v, int c) { E[cntE] = Edge(v, c, H[u]); H[u] = cntE++; E[cntE] = Edge(u, 0, H[v]); H[v] = cntE++; } void addedges(int u, int v) { edges->v = v; edges->next = h[u]; h[u] = edges++; } void bfs() { memset(cnt, 0, sizeof cnt); memset(dis, -1, sizeof dis); cnt[0] = 1, dis[t] = 0; q.push(t); while(!q.empty()) { int u =q.front(); q.pop(); for(int e = H[u]; ~e; e = E[e].next) { int v = E[e].v; if(dis[v] == -1) { dis[v] = dis[u] + 1; cnt[dis[v]]++; q.push(v); } } } } int isap() { memcpy(cur, H, sizeof H); flow = 0; bfs(); int u = pre[s] = s, e, minv, pos, f; while(dis[s] < nv) { if(u == t) { f = INF; for(int i = s; i != t; i = E[cur[i]].v) if(E[cur[i]].c < f) { f = E[cur[i]].c; pos = i; } for(int i = s; i != t; i = E[cur[i]].v) { E[cur[i]].c -= f; E[cur[i] ^ 1].c += f; } flow += f; u = pos; } for(e = H[u]; ~e; e = E[e].next) if(E[e].c && dis[E[e].v] + 1 == dis[u]) break; if(~e) { cur[u] = e; pre[E[e].v] = u; u = E[e].v; } else { if(--cnt[dis[u]] == 0) break; for(e = H[u], minv = nv; ~e; e = E[e].next) if(E[e].c && minv > dis[E[e].v]) { minv = dis[E[e].v]; cur[u] = e; } dis[u] = minv + 1; cnt[dis[u]]++; u = pre[u]; } } return flow; } void dfs(int u) { vis[u] = true; ans[Cnt].push_back(u); for(edge *e = h[u]; e; e = e->next) if(!vis[e->v]) dfs(e->v); } void init() { edges = EE; memset(h, 0, sizeof h); memset(H, -1, sizeof H); for(int i = 2; i <= 20000; i++) if(p[i] == 0) for(int j = i + i; j <= 20000; j += i) p[j] = 1; } void read() { scanf("%d", &n); for(int i = 1; i <= n; i++) scanf("%d", &a[i]); } void work() { Cnt = 0; int res = 0; s = 0, t = n + 1, nv = t + 1; for(int i = 1; i <= n; i++) { if(a[i] % 2 == 0) addedges(s, i, 2), res += 2, Cnt++; else addedges(i, t, 2); } for(int i = 1; i <= n; i++) if(a[i] % 2 == 0) for(int j = 1; j <= n; j++) if(p[a[i] + a[j]] == 0) addedges(i, j, 1); int t = isap(); if(t != res || Cnt * 2 != n) { printf("Impossible\n"); return; } for(int i = 1; i <= n; i++) if(a[i] % 2 == 0) for(int e = H[i]; ~e; e = E[e].next) if(E[e].c == 0) addedges(i, E[e].v), addedges(E[e].v, i); Cnt = 0; for(int i = 1; i <= n; i++) if(!vis[i]) dfs(i), Cnt++; printf("%d\n", Cnt); for(int i = 0; i < Cnt; i++) { printf("%d ", (int)ans[i].size()); for(int j = 0; j < ans[i].size(); j++) printf("%d%c", ans[i][j], j == ans[i].size() - 1 ? '\n' : ' '); } } int main() { init(); read(); work(); return 0; }