Unique Paths

难度:2

DP入门题,挺水的

dp[i][j]表示i,j到终点的方法数

dp[i][j]=dp[i+1][j]+dp[i][j+1]

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

class Solution 
{
public:
    int uniquePaths(int m, int n) 
	{
		int **dp =new int*[2];
		dp[0] = new int[n];
		dp[1] = new int[n];
		//dp[i][j]=dp[i+1][j]+dp[i][j+1]
		for(int i=0;i<n;i++)
		{
			dp[0][i]=1;
		}
		for(int i=m-2,now=1;i>=0;i--,now^=1)
		{
			dp[now][n-1]=1;
			for(int j=n-2;j>=0;j--)
			{
				dp[now][j]=dp[now^1][j]+dp[now][j+1];
			}
		}
		int ans=dp[m&1?0:1][0];
		delete [] dp[0];
		delete [] dp[1];
		return ans;
    }
};


你可能感兴趣的:(Unique Paths)