Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 7409 | Accepted: 2009 |
Description
You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edges are numbered 1 through N − 1. Each edge is associated with a weight. Then you are to execute a series of instructions on the tree. The instructions can be one of the following forms:
CHANGE i v |
Change the weight of the ith edge to v |
NEGATE a b |
Negate the weight of every edge on the path from a to b |
QUERY a b |
Find the maximum weight of edges on the path from a to b |
Input
The input contains multiple test cases. The first line of input contains an integer t (t ≤ 20), the number of test cases. Then follow the test cases.
Each test case is preceded by an empty line. The first nonempty line of its contains N (N ≤ 10,000). The next N − 1 lines each contains three integers a, b and c, describing an edge connecting nodes a and bwith weight c. The edges are numbered in the order they appear in the input. Below them are the instructions, each sticking to the specification above. A lines with the word “DONE
” ends the test case.
Output
For each “QUERY
” instruction, output the result on a separate line.
Sample Input
1 3 1 2 1 2 3 2 QUERY 1 2 CHANGE 1 3 QUERY 1 2 DONE
Sample Output
1 3
Source
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #define N 10003 #define M 20003 using namespace std; int n,m,point[N],next[M],v[M],c[M],deep[N],size[N],pos[N],val[N],tv[N]; int tr[40003],tr1[40003],delta[40003],tot,sz,t,fa[N][15],mi[15],son[N],belong[N],ed[M],e[M]; int xx,yy; bool p; const int inf=1e9; void clear() { tot=0; sz=0; memset(delta,0,sizeof(delta)); memset(point,0,sizeof(point)); memset(next,0,sizeof(next)); memset(tr,0,sizeof(tr)); memset(tr1,0,sizeof(tr1)); memset(fa,0,sizeof(fa)); memset(son,0,sizeof(son)); memset(e,0,sizeof(e)); memset(ed,0,sizeof(ed)); memset(deep,0,sizeof(deep)); } void ne(int &x,int &y) { int t=x; x=(-1)*y; y=(-1)*t; } void add(int x,int y,int z,int num) { tot++; next[tot]=point[x]; point[x]=tot; v[tot]=y; c[tot]=z; e[tot]=num; tot++; next[tot]=point[y]; point[y]=tot; v[tot]=x; c[tot]=z; e[tot]=num; } void dfs1(int x,int f,int dep) { size[x]=1; deep[x]=dep; for (int i=1;i<=13;i++) { if (deep[x]-mi[i]<0) break; fa[x][i]=fa[fa[x][i-1]][i-1]; } int k=0; for (int i=point[x];i!=0;i=next[i]) if (v[i]!=f) { fa[v[i]][0]=x; val[v[i]]=c[i]; ed[e[i]]=v[i];//第I条边下放到了哪一个点 dfs1(v[i],x,dep+1); if(size[v[i]]>size[k]) k=v[i]; son[x]=k; size[x]+=size[v[i]]; } } void dfs2(int x,int chain) { pos[x]=++sz; tv[sz]=val[x]; belong[x]=chain; if (son[x]) dfs2(son[x],chain); for (int i=point[x];i!=0;i=next[i]) if (deep[v[i]]>deep[x]&&v[i]!=son[x]) dfs2(v[i],v[i]); } int lca(int x,int y) { if (deep[x]<deep[y]) swap(x,y); int k=deep[x]-deep[y]; for (int i=0;i<=13;i++) if (k>>i&1) x=fa[x][i]; if (x==y) return x; for (int i=13;i>=0;i--) if(fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i]; return fa[x][0]; } void pushdown(int now,int l,int r) { if (!delta[now]) return; ne(tr[now<<1],tr1[now<<1]); delta[now<<1]^=1; ne(tr[now<<1|1],tr1[now<<1|1]); delta[now<<1|1]^=1; delta[now]=0; } void update(int x) { tr[x]=max(tr[x<<1],tr[x<<1|1]); tr1[x]=min(tr1[x<<1],tr1[x<<1|1]); } void build(int now,int l,int r) { if (l==r) { tr[now]=tr1[now]=tv[l]; return; } int mid=(l+r)/2; build(now<<1,l,mid); build(now<<1|1,mid+1,r); update(now); } void change(int now,int l,int r,int x,int v) { if (l==r) { tr[now]=tr1[now]=v; return; } pushdown(now,l,r); int mid=(l+r)/2; if (x<=mid) change(now<<1,l,mid,x,v); else change(now<<1|1,mid+1,r,x,v); update(now); } int qjmax(int now,int l,int r,int ll,int rr) { int ans=-inf; if (ll<=l&&r<=rr) { return tr[now]; } pushdown(now,l,r); int mid=(l+r)/2; if (ll<=mid) ans=max(ans,qjmax(now<<1,l,mid,ll,rr)); if (rr>mid) ans=max(ans,qjmax(now<<1|1,mid+1,r,ll,rr)); return ans; } void qjch(int now,int l,int r,int ll,int rr) { if (ll<=l&&r<=rr) { delta[now]^=1; ne(tr[now],tr1[now]); return; } pushdown(now,l,r); int mid=(l+r)/2; if (ll<=mid) qjch(now<<1,l,mid,ll,rr); if (rr>mid) qjch(now<<1|1,mid+1,r,ll,rr); update(now); } int solve(int x,int f) { int maxn=-inf; while (belong[x]!=belong[f]) { maxn=max(maxn,qjmax(1,1,m,pos[belong[x]],pos[x])); x=fa[belong[x]][0]; } if (pos[f]+1<=pos[x]) maxn=max(maxn,qjmax(1,1,m,pos[f]+1,pos[x])); return maxn; } void solve1(int x,int f) { while (belong[x]!=belong[f]) { qjch(1,1,m,pos[belong[x]],pos[x]); x=fa[belong[x]][0]; } if (pos[f]+1<=pos[x]) qjch(1,1,m,pos[f]+1,pos[x]); } int main() { scanf("%d",&t); mi[0]=1; for (int i=1;i<=13;i++) mi[i]=mi[i-1]*2; for (int i=1;i<=t;i++) { clear(); scanf("%d",&m); for (int j=1;j<=m-1;j++) { int x,y,z; scanf("%d%d%d",&x,&y,&z); add(x,y,z,j); } val[1]=-inf; dfs1(1,0,1); dfs2(1,1); char s[10]; build(1,1,m); while (scanf("%s",s)) { p=false; if (s[0]=='D') break; if (s[0]=='N') { int x,y; scanf("%d%d",&x,&y); int t=lca(x,y); solve1(x,t),solve1(y,t); } if (s[0]=='C') { int x,y; scanf("%d%d",&x,&y); val[ed[x]]=y; change(1,1,m,pos[ed[x]],y); } if (s[0]=='Q') { int x,y; scanf("%d%d",&x,&y); int t=lca(x,y); printf("%d\n",max(solve(x,t),solve(y,t))); } } } }