题目链接:https://leetcode.com/problems/product-of-array-except-self/
Given an array of n integers where n > 1, nums
, return an array output
such that output[i]
is equal to the product of all the elements of nums
except nums[i]
.
Solve it without division and in O(n).
For example, given [1,2,3,4]
, return [24,12,8,6]
.
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
思路:如果没有限制,最简单的思路当然是得到所有的乘积然后除以当前这一位数。既然不让用除,那么也可以用两个数组来保存[0, i]区间的乘积和[i, n-1]的乘积,然后在求结果的时候乘以左右边的乘积即可,这种空间复杂度是O(n)。
但是后来又限制空间复杂度,我们可以从左到右扫描一遍得到前面部分的乘积,再从右到左扫描一遍得到后半部分的乘积,然后将其相乘即是最终结果。
盗用水中的鱼blog的一张图,下图表明操作的流程
代码如下:
class Solution { public: vector<int> productExceptSelf(vector<int>& nums) { int len = nums.size(); vector<int> result(len); result[0] = 1; for(int i = 1; i < len; i++) result[i] = result[i-1]*nums[i-1]; int tem =1; for(int i = len -2; i>= 0; i--) { tem *= nums[i+1]; result[i] = result[i] * tem; } return result; } };参考:http://fisherlei.blogspot.com/2015/10/leetcode-product-of-array-except-self.html