Lucas定理
A、B是非负整数,p是质数。A B写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]。
则组合数C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0]) mod p同余
即:Lucas(n,m,p)=C(n%p,m%p)*Lucas(n/p,m/p,p)
//快速幂a^b % k
ll PowerMod(ll a, ll b, ll k) { ll tmp = a, ret = 1; while (b) { if (b & 1) ret = ret * tmp % k; tmp = tmp * tmp % k; b >>= 1; } return ret; }
//求C(n, m)%p p最大为10^5 n, m可以很大!
ll Lucas(ll n, ll m, ll p) { ll ret = 1; while (n && m) { ll nn = n%p, mm = m%p; if (nn < mm) return 0; //fac[nn]为预处理的 fac[n] = n!%p ret = ret*fac[nn]*PowerMod(fac[mm]*fac[nn-mm]%p, p-2, p)%p; n /= p; m /= p; } return ret; } //C(n, m) % p Lucas(n, m, p);
AC代码:
#include <cstdio> #include <algorithm> #include <cmath> #include <iostream> using namespace std; typedef long long ll; ll fac[100003]; void init(ll p) { fac[0] = 1; for (int i=1; i<=p; i++) fac[i] = fac[i-1]*i%p; } ll PowerMod(ll a, ll b, ll k) { ll tmp = a, ret = 1; while (b) { if (b & 1) ret = ret * tmp % k; tmp = tmp * tmp % k; b >>= 1; } return ret; } ll Lucas(ll n, ll m, ll p) { ll ret = 1; while (n && m) { ll nn = n%p, mm = m%p; if (nn < mm) return 0; ret = ret*fac[nn]*PowerMod(fac[mm]*fac[nn-mm]%p, p-2, p)%p; n /= p; m /= p; } return ret; } int main() { int T; ll n, m, p; cin >> T; while (T--) { cin >> n >> m >> p; init(p); cout << Lucas(n+m, m, p) << endl; } return 0; }