hadoop MapTask
1.通过Job的inputFormmat获得对应InputFormat然后获得RecordReader
2.numReduceTasks从前面conf计算的得到,numReduceTasks>0就有n个partition来做shuffle,说明partition的个数是由reduceNum决定的。numReduceTasks为0,则明显是map直接输出的任务。
private <INKEY,INVALUE,OUTKEY,OUTVALUE> void runOldMapper(final JobConf job, final TaskSplitIndex splitIndex, final TaskUmbilicalProtocol umbilical, TaskReporter reporter ) throws IOException, InterruptedException, ClassNotFoundException { InputSplit inputSplit = getSplitDetails(new Path(splitIndex.getSplitLocation()), splitIndex.getStartOffset()); updateJobWithSplit(job, inputSplit); reporter.setInputSplit(inputSplit); RecordReader<INKEY,INVALUE> rawIn = // open input job.getInputFormat().getRecordReader(inputSplit, job, reporter); RecordReader<INKEY,INVALUE> in = isSkipping() ? new SkippingRecordReader<INKEY,INVALUE>(rawIn, umbilical, reporter) : new TrackedRecordReader<INKEY,INVALUE>(rawIn, reporter); job.setBoolean("mapred.skip.on", isSkipping()); int numReduceTasks = conf.getNumReduceTasks(); LOG.info("numReduceTasks: " + numReduceTasks); MapOutputCollector collector = null; if (numReduceTasks > 0) { collector = new MapOutputBuffer(umbilical, job, reporter); } else { collector = new DirectMapOutputCollector(umbilical, job, reporter); } MapRunnable<INKEY,INVALUE,OUTKEY,OUTVALUE> runner = ReflectionUtils.newInstance(job.getMapRunnerClass(), job); try { runner.run(in, new OldOutputCollector(collector, conf), reporter); collector.flush(); } finally { //close in.close(); // close input collector.close(); } }
Q.前面方法调用getSplitDetail是为了获得InputSplit,这里有点看不懂
private <T> T getSplitDetails(Path file, long offset) throws IOException { FileSystem fs = file.getFileSystem(conf); FSDataInputStream inFile = fs.open(file); inFile.seek(offset); String className = Text.readString(inFile); Class<T> cls; try { cls = (Class<T>) conf.getClassByName(className); } catch (ClassNotFoundException ce) { IOException wrap = new IOException("Split class " + className + " not found"); wrap.initCause(ce); throw wrap; } SerializationFactory factory = new SerializationFactory(conf); Deserializer<T> deserializer = (Deserializer<T>) factory.getDeserializer(cls); deserializer.open(inFile); T split = deserializer.deserialize(null); long pos = inFile.getPos(); getCounters().findCounter(Task.Counter.SPLIT_RAW_BYTES).increment(pos - offset); inFile.close(); return split; }
public void run(final JobConf job, final TaskUmbilicalProtocol umbilical) throws IOException, ClassNotFoundException, InterruptedException { this.umbilical = umbilical; // start thread that will handle communication with parent TaskReporter reporter = new TaskReporter(getProgress(), umbilical, jvmContext); reporter.startCommunicationThread(); boolean useNewApi = job.getUseNewMapper(); initialize(job, getJobID(), reporter, useNewApi); // check if it is a cleanupJobTask if (jobCleanup) { runJobCleanupTask(umbilical, reporter); return; } if (jobSetup) { runJobSetupTask(umbilical, reporter); return; } if (taskCleanup) { runTaskCleanupTask(umbilical, reporter); return; } if (useNewApi) { runNewMapper(job, splitMetaInfo, umbilical, reporter); } else { runOldMapper(job, splitMetaInfo, umbilical, reporter); } done(umbilical, reporter); }
新api下的runMapper,将各种自定义的class信息都保存到conf里了,用动态代理的方式new mapper出来。
private <INKEY,INVALUE,OUTKEY,OUTVALUE> void runNewMapper(final JobConf job, final TaskSplitIndex splitIndex, final TaskUmbilicalProtocol umbilical, TaskReporter reporter ) throws IOException, ClassNotFoundException, InterruptedException { // make a task context so we can get the classes org.apache.hadoop.mapreduce.TaskAttemptContext taskContext = new org.apache.hadoop.mapreduce.TaskAttemptContext(job, getTaskID()); // make a mapper org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper = (org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>) ReflectionUtils.newInstance(taskContext.getMapperClass(), job); // make the input format org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat = (org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE>) ReflectionUtils.newInstance(taskContext.getInputFormatClass(), job); // rebuild the input split org.apache.hadoop.mapreduce.InputSplit split = null; split = getSplitDetails(new Path(splitIndex.getSplitLocation()), splitIndex.getStartOffset()); org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input = new NewTrackingRecordReader<INKEY,INVALUE> (inputFormat.createRecordReader(split, taskContext), reporter); job.setBoolean("mapred.skip.on", isSkipping()); org.apache.hadoop.mapreduce.RecordWriter output = null; org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context mapperContext = null; try { Constructor<org.apache.hadoop.mapreduce.Mapper.Context> contextConstructor = org.apache.hadoop.mapreduce.Mapper.Context.class.getConstructor (new Class[]{org.apache.hadoop.mapreduce.Mapper.class, Configuration.class, org.apache.hadoop.mapreduce.TaskAttemptID.class, org.apache.hadoop.mapreduce.RecordReader.class, org.apache.hadoop.mapreduce.RecordWriter.class, org.apache.hadoop.mapreduce.OutputCommitter.class, org.apache.hadoop.mapreduce.StatusReporter.class, org.apache.hadoop.mapreduce.InputSplit.class}); // get an output object if (job.getNumReduceTasks() == 0) { output = new NewDirectOutputCollector(taskContext, job, umbilical, reporter); } else { output = new NewOutputCollector(taskContext, job, umbilical, reporter); } mapperContext = contextConstructor.newInstance(mapper, job, getTaskID(), input, output, committer, reporter, split); input.initialize(split, mapperContext); mapper.run(mapperContext); input.close(); output.close(mapperContext); } catch (NoSuchMethodException e) { throw new IOException("Can't find Context constructor", e); } catch (InstantiationException e) { throw new IOException("Can't create Context", e); } catch (InvocationTargetException e) { throw new IOException("Can't invoke Context constructor", e); } catch (IllegalAccessException e) { throw new IOException("Can't invoke Context constructor", e); } }