题意中文不解释。。
思路:以每个物品当做图中的顶点,以优惠的价格为边权,建图,这里让求需要的最少金币,故可以转化为最短路问题,这里引入一个超级源点0,可以看做是每个物品都可以和自己交换,但没有优惠价格,当找不到可交换的物品时(只能和自己交换),则返回当前的最短路径长度,即是所需要的最少金币。
#include<iostream> #include<vector> #include<algorithm> #include<string.h> #include<queue> #include<cstdio> #define N 105 using namespace std; struct Gnode { Gnode() {} Gnode(int len,int num):len(len),num(num) {} int len,num; }; struct Gnode1 { Gnode1() {} Gnode1(int num,int dis,int maxlev,int minlev):num(num),dis(dis),maxlev(maxlev),minlev(minlev) {} int num,dis,maxlev,minlev; bool operator< (const Gnode1 &now) const {return now.dis<dis;} }; int lev[N],dlev; int dijkstra(vector<vector<Gnode> >&Graph) { priority_queue<Gnode1> Q; Q.push(Gnode1(1,0,lev[1],lev[1])); while(1) { Gnode1 cur=Q.top(); if(cur.num==0) return cur.dis; for(int i=0;i<Graph[cur.num].size();++i) { if(Graph[cur.num][i].num==0||(cur.maxlev-lev[Graph[cur.num][i].num]<=dlev&&lev[Graph[cur.num][i].num]-cur.minlev<=dlev)) { int maxx=max(cur.maxlev,lev[Graph[cur.num][i].num]); int minx=min(cur.minlev,lev[Graph[cur.num][i].num]); Q.push(Gnode1(Graph[cur.num][i].num,cur.dis+Graph[cur.num][i].len,maxx,minx)); } } Q.pop(); } } int main() { int n; while(cin>>dlev>>n&&dlev&&n) { vector<vector<Gnode> >Graph (n+1); memset(lev,0,sizeof(lev)); for(int i=1;i<=n;++i) { int price,m; cin>>price>>lev[i]>>m; Graph[i].push_back(Gnode(price,0)); for(int j=0;j!=m;++j) { int a,b; cin>>a>>b; Graph[i].push_back(Gnode(b,a)); } } cout<<dijkstra(Graph)<<endl; }return 0; }