epoll两种监听模式

Edge Triggered 工作模式: 
如果我们在第1步将RFD添加到epoll描述符的时候使用了EPOLLET标志,那么在第5步调用epoll_wait(2)之后将有可能会挂起,因为剩余的数据还存在于文件的输入缓冲区内,而且数据发出端还在等待一个针对已经发出数据的反馈信息。只有在监视的文件句柄上发生了某个事件的时候 ET 工作模式才会汇报事件。因此在第5步的时候,调用者可能会放弃等待仍在存在于文件输入缓冲区内的剩余数据。在上面的例子中,会有一个事件产生在RFD句柄上,因为在第2步执行了一个写操作,然后,事件将会在第3步被销毁。因为第4步的读取操作没有读空文件输入缓冲区内的数据,因此我们在第5步调用 epoll_wait(2)完成后,是否挂起是不确定的。epoll工作在ET模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。最好以下面的方式调用ET模式的epoll接口,在后面会介绍避免可能的缺陷。 
   i    基于非阻塞文件句柄 
   ii   只有当read(2)或者write(2)返回EAGAIN时才需要挂起,等待。但这并不是说每次read()时都需要循环读,直到读到产生一个EAGAIN才认为此次事件处理完成,当read()返回的读到的数据长度小于请求的数据长度时,就可以确定此时缓冲中已没有数据了,也就可以认为此事读事件已处理完成。 

Level Triggered 工作模式 
相反的,以LT方式调用epoll接口的时候,它就相当于一个速度比较快的poll(2),并且无论后面的数据是否被使用,因此他们具有同样的职能。因为即使使用ET模式的epoll,在收到多个chunk的数据的时候仍然会产生多个事件。调用者可以设定EPOLLONESHOT标志,在 epoll_wait(2)收到事件后epoll会与事件关联的文件句柄从epoll描述符中禁止掉。因此当EPOLLONESHOT设定后,使用带有 EPOLL_CTL_MOD标志的epoll_ctl(2)处理文件句柄就成为调用者必须作的事情。 


然后详细解释ET, LT: 

LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表. 

ET(edge-triggered)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once),不过在TCP协议中,ET模式的加速效用仍需要更多的benchmark确认(这句话不理解)。 

在许多测试中我们会看到如果没有大量的idle -connection或者dead-connection,epoll的效率并不会比select/poll高很多,但是当我们遇到大量的idle- connection(例如WAN环境中存在大量的慢速连接),就会发现epoll的效率大大高于select/poll。(未测试) 



另外,当使用epoll的ET模型来工作时,当产生了一个EPOLLIN事件后, 
读数据的时候需要考虑的是当recv()返回的大小如果等于请求的大小,那么很有可能是缓冲区还有数据未读完,也意味着该次事件还没有处理完,所以还需要再次读取: 
Java代码   收藏代码
  1. while(rs)  
  2. {  
  3.   buflen = recv(activeevents[i].data.fd, buf, sizeof(buf), 0);  
  4.   if(buflen < 0)  
  5.   {  
  6.     // 由于是非阻塞的模式,所以当errno为EAGAIN时,表示当前缓冲区已无数据可读  
  7.     // 在这里就当作是该次事件已处理处.  
  8.     if(errno == EAGAIN)  
  9.      break;  
  10.     else  
  11.      return;  
  12.    }  
  13.    else if(buflen == 0)  
  14.    {  
  15.      // 这里表示对端的socket已正常关闭.  
  16.    }  
  17.    if(buflen == sizeof(buf)  
  18.      rs = 1;   // 需要再次读取  
  19.    else  
  20.      rs = 0;  
  21. }  



还有,假如发送端流量大于接收端的流量(意思是epoll所在的程序读比转发的socket要快),由于是非阻塞的socket,那么send()函数虽然返回,但实际缓冲区的数据并未真正发给接收端,这样不断的读和发,当缓冲区满后会产生EAGAIN错误(参考man send),同时,不理会这次请求发送的数据.所以,需要封装socket_send()的函数用来处理这种情况,该函数会尽量将数据写完再返回,返回-1表示出错。在socket_send()内部,当写缓冲已满(send()返回-1,且errno为EAGAIN),那么会等待后再重试.这种方式并不很完美,在理论上可能会长时间的阻塞在socket_send()内部,但暂没有更好的办法. 

Java代码   收藏代码
  1. ssize_t socket_send(int sockfd, const char* buffer, size_t buflen)  
  2. {  
  3.   ssize_t tmp;  
  4.   size_t total = buflen;  
  5.   const char *p = buffer;  
  6.   
  7.   while(1)  
  8.   {  
  9.     tmp = send(sockfd, p, total, 0);  
  10.     if(tmp < 0)  
  11.     {  
  12.       // 当send收到信号时,可以继续写,但这里返回-1.  
  13.       if(errno == EINTR)  
  14.         return -1;  
  15.   
  16.       // 当socket是非阻塞时,如返回此错误,表示写缓冲队列已满,  
  17.       // 在这里做延时后再重试.  
  18.       if(errno == EAGAIN)  
  19.       {  
  20.         usleep(1000);  
  21.         continue;  
  22.       }  
  23.   
  24.       return -1;  
  25.     }  
  26.   
  27.     if((size_t)tmp == total)  
  28.       return buflen;  
  29.   
  30.     total -= tmp;  
  31.     p += tmp;  
  32.   }  
  33.   
  34.   return tmp;  
  35. }  

你可能感兴趣的:(C++,linux,socket,网络编程)