poj 2406 Power Strings 【KMP求最小循环节】【后缀数组求连续重复子串】

Power Strings
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 36063   Accepted: 14902

Description

Given two strings a and b we define a*b to be their concatenation. For example, if a = "abc" and b = "def" then a*b = "abcdef". If we think of concatenation as multiplication, exponentiation by a non-negative integer is defined in the normal way: a^0 = "" (the empty string) and a^(n+1) = a*(a^n).

Input

Each test case is a line of input representing s, a string of printable characters. The length of s will be at least 1 and will not exceed 1 million characters. A line containing a period follows the last test case.

Output

For each s you should print the largest n such that s = a^n for some string a.

Sample Input

abcd
aaaa
ababab
.

Sample Output

1
4
3
第一道kmp:
mp算法:(172ms)
#include <cstdio>
#include <cstring>
#define MAX 1000000+10
using namespace std;
char P[MAX];
int f[MAX];
void getfail()
{
    int i, j;
    int len = strlen(P);
    f[0] = f[1] = 0;
    for(i = 1; i < len; i++)
    {
        j = f[i];
        while(j && P[i] != P[j])
        j = f[j];
        f[i+1] = P[i]==P[j]?j+1:0;
    }
}
int main()
{
    int len;
    while(scanf("%s", P), P[0] != '.')
    {
        getfail();
        len = strlen(P);
        if(len % (len-f[len]))
        printf("1\n");
        else
        printf("%d\n", len/(len-f[len]));
    }
    return 0;
}

kmp算法:(110ms)
#include <cstdio>
#include <cstring>
#include <cmath>
#define MAX 1000000+10
using namespace std;
char P[MAX], T[MAX];
int f[MAX];
void getfail()//优化失配函数 
{
    int i = 0, j = -1;
    f[0] = -1;
    int len = strlen(P);
    while(i < len)
    {
        if(j == -1 || P[i] == P[j])
        f[++i] = ++j;
        else
        j = f[j];
    }
} 
int main()
{
    int len;
    while(scanf("%s", P), P[0] != '.')
    {
        getfail();
        len = strlen(P);
        if(len % (len-f[len]))
        printf("1\n");
        else
        printf("%d\n", len/(len-f[len]));
    }
    return 0;
} 

后缀数组:思路:我们枚举连续子串的末尾,得到一个长度k,然后判断当前的k是否可行。方法是LCP(suffix(i), suffix(i+k)) == n - k。直接RMQ会MLE,我们用dp去维护这个直接可以了,因为一个点是固定的。倍增会T,用dc3。。。。
AC代码:
 
 
//#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#define PI acos(-1.0)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define fi first
#define se second
#define ll o<<1
#define rr o<<1|1
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
const int MAXN = 1e6 + 10;
const int pN = 1e6;// <= 10^7
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
void add(LL &x, LL y) { x += y; x %= MOD; }
#define F(x) ((x)/3+((x)%3==1?0:tb))
#define G(x) ((x)<tb?(x)*3+1:((x)-tb)*3+2)
int wa[MAXN], wb[MAXN], wv[MAXN], ws[MAXN];
int c0(int *r, int a, int b) {
    return r[a] == r[b] && r[a+1] == r[b+1] && r[a+2] == r[b+2];
}
int c12(int k, int *r, int a, int b) {
    if(k == 2) return r[a] < r[b] || r[a] == r[b] && c12(1, r, a+1, b+1);
    else return r[a] < r[b] || r[a] == r[b] && wv[a+1] < wv[b+1];
}
void Sort(int *r, int *a, int *b, int n, int m) {
    int i;
    for(i = 0; i < n; i++) wv[i] = r[a[i]];
    for(i = 0; i < m; i++) ws[i] = 0;
    for(i = 0; i < n; i++) ws[wv[i]]++;
    for(i = 1; i < m; i++) ws[i] += ws[i-1];
    for(i= n-1; i >= 0; i--) b[--ws[wv[i]]] = a[i];
}
void dc3(int *r, int *sa, int n, int m) {
    int i, j, *rn = r+n, *san = sa+n, ta = 0, tb = (n+1)/3, tbc = 0, p;
    r[n] = r[n+1] = 0;
    for(i = 0; i < n; i++) if(i % 3) wa[tbc++] = i;
    Sort(r+2, wa, wb, tbc, m);
    Sort(r+1, wb, wa, tbc, m);
    Sort(r, wa, wb, tbc, m);
    for(p = 1, rn[F(wb[0])] = 0, i = 1; i < tbc; i++)
    rn[F(wb[i])] = c0(r,wb[i-1],wb[i]) ? p-1 : p++;
    if(p < tbc) dc3(rn, san, tbc, p);
    else for(i = 0; i < tbc; i++) san[rn[i]] = i;
    for(i = 0; i < tbc; i++) if(san[i] < tb) wb[ta++] = san[i]*3;
    if(n % 3 == 1) wb[ta++] = n-1;
    Sort(r, wb, wa, ta, m);
    for(i = 0; i < tbc; i++) wv[wb[i] = G(san[i])] = i;
    for(i = 0, j = 0, p = 0; i < ta && j < tbc; p++)
    sa[p] = c12(wb[j]%3, r, wa[i], wb[j]) ? wa[i++] : wb[j++];
    for(; i < ta; p++) sa[p] = wa[i++];
    for(; j < tbc; p++) sa[p] = wb[j++];
}
int R[MAXN*3], H[MAXN*3];
void calh(int *r, int *sa, int n)
{
    int i, j, k = 0;
    for(i = 1; i <= n; i++) R[sa[i]] = i;
    for(i = 0; i < n; H[R[i++]] = k)
    for(k ? k-- : 0, j = sa[R[i]-1]; r[i+k] == r[j+k]; k++);
}
int sa[MAXN*3];
int a[MAXN];
char str[MAXN];
int dp[MAXN];
void dp_init(int n) {
    CLR(dp, INF); int id = R[0];
    for(int i = id-1; i >= 1; i--) {
        if(i == id-1) dp[i] = H[i+1];
        else dp[i] = min(dp[i+1], H[i+1]);
    }
    for(int i = id+1; i <= n; i++) {
        if(i == id + 1) dp[i] = H[i];
        else dp[i] = min(dp[i-1], H[i]);
    }
}
int main()
{
    while(scanf("%s", str), str[0] != '.') {
        int n = strlen(str); int Max = 0;
        if(n & 1) {
            printf("1\n");
            continue;
        }
        for(int i = 0; i < n; i++) {
            a[i] = str[i] - 'a' + 1;
            Max = max(Max, a[i]);
        }
        a[n] = 0; dc3(a, sa, n+1, Max+1);//<n+1
        calh(a, sa, n);//<=n
        dp_init(n); int ans = 1;
        for(int i = 1; i <= n/2; i++) {
            if(n % i == 0) {
                if(dp[R[i]] == n - i) {
                    ans = n / i;
                    break;
                }
            }
        }
        printf("%d\n", ans);
    }
    return 0;
}


 
 
 

你可能感兴趣的:(poj 2406 Power Strings 【KMP求最小循环节】【后缀数组求连续重复子串】)