hdoj 4937 Lucky Number 【思维题】



Lucky Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1487    Accepted Submission(s): 441


Problem Description
“Ladies and Gentlemen, It’s show time! ”

“A thief is a creative artist who takes his prey in style... But a detective is nothing more than a critic, who follows our footsteps...”

Love_Kid is crazy about Kaito Kid , he think 3(because 3 is the sum of 1 and 2), 4, 5, 6 are his lucky numbers and all others are not. 

Now he finds out a way that he can represent a number through decimal representation in another numeral system to get a number only contain 3, 4, 5, 6. 

For example, given a number 19, you can represent it as 34 with base 5, so we can call 5 is a lucky base for number 19. 

Now he will give you a long number n(1<=n<=1e12), please help him to find out how many lucky bases for that number. 

If there are infinite such base, just print out -1.
 

Input
There are multiply test cases.

The first line contains an integer T(T<=200), indicates the number of cases. 

For every test case, there is a number n indicates the number.
 

Output
For each test case, output “Case #k: ”first, k is the case number, from 1 to T , then, output a line with one integer, the answer to the query.
 

Sample Input
       
       
       
       
2 10 19
 

Sample Output
       
       
       
       
Case #1: 0 Case #2: 1
Hint
10 shown in hexadecimal number system is another letter different from ‘0’-‘9’, we can represent it as ‘A’, and you can extend to other cases.
 


定义:若一个数n的k进制全部由3、4、5、6这些数组成,称k是n的幸运数。


题意:给你一个数n(1 <= n <= 1e12),问你它的幸运数有多少个。若不存在输出0,无穷多输出-1。


思路:n最多为1e12,就算一层for也会TLE。我们可以考虑把搜索范围尽可能的缩小。

首先,我们可以把n写成n = a0 + a1 * k^1 + a2 * k^2 + ...


情况一:只有a0组成,直接判断即可。

情况二:n = a0 + a1 * k^1,这时直接求解就可以了,k的范围 >= 1e7

情况三:n = a0 + a1 * k^1 + a2 * k^2,这时就是求解一元二次方程了,k的范围 >= 1e5

其余情况:会出现k^3,这时搜索范围k <= (n)^(1/3),时间复杂度可以承受,直接暴力即可。



AC代码:


#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define LL long long
using namespace std;
int kcase = 1;
bool judge(LL base, LL n)
{
    while(n)
    {
        if(n % base < 3 || n % base > 6)
            return false;
        n /= base;
    }
    return true;
}
void solve()
{
    LL n;
    scanf("%lld", &n);
    printf("Case #%d: ", kcase++);
    if(n >= 3 && n <= 6)
    {
        printf("-1\n");
        return ;
    }
    LL ans = 0;
    for(LL a = 3; a <= 6; a++)
    {
        for(LL b = 3; b <= 6; b++)
        {
            if((n-a) % b) continue;
            if((n-a) / b > max(a, b))
                ans++;
        }
    }
    for(LL c = 3; c <= 6; c++)
    {
        for(LL b = 3; b <= 6; b++)
        {
            for(LL a = 3; a <= 6; a++)
            {
                LL C = c - n;
                double temp = sqrt(b*b - 4*a*C);
                if(temp == (LL)temp)
                {
                    LL d = (LL)temp;
                    if((d-b) % (2*a) == 0)
                    {
                        LL x = (d-b) / (2*a);
                        if(x > max(max(a, b), c))
                            ans++;
                    }
                }
            }
        }
    }
    for(LL base = 2; base * base * base <= n; base++)
        if(judge(base, n))
            ans++;
    printf("%lld\n", ans);
}
int main()
{
    int t;
    scanf("%d", &t);
    while(t--){
        solve();
    }
    return 0;
}


你可能感兴趣的:(hdoj 4937 Lucky Number 【思维题】)