题目大意:主人公在玩游戏,他的存档系统坏了,只能从头开始游戏,不能从中途开始,问最少多长时间可以走过所有的流程。
思路:每一条边都要至少走一次,这是流量的下界,源点是游戏的开始,汇点是所有结局。裸的有下界有源汇的费用流。我也不知道为什么要那样建图。。
CODE:
#include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define MAX 1000 #define MAXE 1000010 #define S 0 #define T (MAX - 1) #define INF 0x3f3f3f3f using namespace std; struct MinCostMaxFlow{ int head[MAX],total; int next[MAXE],aim[MAXE],flow[MAXE],cost[MAXE]; int f[MAX],from[MAX],p[MAX]; bool v[MAX]; MinCostMaxFlow():total(1) {} void Add(int x,int y,int f,int c) { next[++total] = head[x]; aim[total] = y; flow[total] = f; cost[total] = c; head[x] = total; } void Insert(int x,int y,int f,int c) { Add(x,y,f,c); Add(y,x,0,-c); } bool SPFA() { static queue<int> q; while(!q.empty()) q.pop(); memset(f,0x3f,sizeof(f)); memset(v,false,sizeof(v)); f[S] = 0; q.push(S); while(!q.empty()) { int x = q.front(); q.pop(); v[x] = false; for(int i = head[x]; i; i = next[i]) if(flow[i] && f[aim[i]] > f[x] + cost[i]) { f[aim[i]] = f[x] + cost[i]; if(!v[aim[i]]) v[aim[i]] = true,q.push(aim[i]); from[aim[i]] = x; p[aim[i]] = i; } } return f[T] != INF; } int EdmondsKarp() { int re = 0; while(SPFA()) { int max_flow = INF; for(int i = T; i != S; i = from[i]) max_flow = min(max_flow,flow[p[i]]); for(int i = T; i != S; i = from[i]) { flow[p[i]] -= max_flow; flow[p[i]^1] += max_flow; } re += f[T] * max_flow; } return re; } }solver; int points; int main() { cin >> points; //solver.Insert(S,1,INF,0); for(int cnt,i = 1; i <= points; ++i) { scanf("%d",&cnt); //if(!cnt) solver.Insert(i,T,INF,0); solver.Insert(i,1,INF,0); for(int x,len,j = 1; j <= cnt; ++j) { scanf("%d%d",&x,&len); solver.Insert(i,x,INF,len); solver.Insert(S,x,1,len); solver.Insert(i,T,1,0); } } cout << solver.EdmondsKarp() << endl; return 0; }