题目大意:
就是现在给出T组测试数据(T <= 10) 每一组有n(n <= 10)个字符串, 每个字符串长度L满足(2 <= L <= 10000)
对于每一组, 求在所给的所有串都出现了至少两次的子串的最大长度, 每个串中出现的两次不能有重叠部分
大致思路:
很明显的后缀数组利用height数组进行分组的题
刚开始的时候没有考虑出现的两次不重合(没仔细读题以为可以...) WA了2发= =
具体细节见代码:
代码如下:
Result : Accepted Memory : 6758 KB Time : 50 ms
/* * Author: Gatevin * Created Time: 2015/2/9 14:14:28 * File Name: Iris_Freyja.cpp */ #include<iostream> #include<sstream> #include<fstream> #include<vector> #include<list> #include<deque> #include<queue> #include<stack> #include<map> #include<set> #include<bitset> #include<algorithm> #include<cstdio> #include<cstdlib> #include<cstring> #include<cctype> #include<cmath> #include<ctime> #include<iomanip> using namespace std; const double eps(1e-8); typedef long long lint; #define maxn 102333 /* * Doubling Algorithm 求后缀数组 */ int wa[maxn], wb[maxn], wv[maxn], Ws[maxn]; int cmp(int *r, int a, int b, int l) { return r[a] == r[b] && r[a + l] == r[b + l]; } void da(int *r, int *sa, int n, int m) { int *x = wa, *y = wb, *t, i, j, p; for(i = 0; i < m; i++) Ws[i] = 0; for(i = 0; i < n; i++) Ws[x[i] = r[i]]++; for(i = 1; i < m; i++) Ws[i] += Ws[i - 1]; for(i = n - 1; i >= 0; i--) sa[--Ws[x[i]]] = i; for(j = 1, p = 1; p < n; j *= 2, m = p) { for(p = 0, i = n - j; i < n; i++) y[p++] = i; for(i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i] - j; for(i = 0; i < n; i++) wv[i] = x[y[i]]; for(i = 0; i < m; i++) Ws[i] = 0; for(i = 0; i < n; i++) Ws[wv[i]]++; for(i = 1; i < m; i++) Ws[i] += Ws[i - 1]; for(i = n - 1; i >= 0; i--) sa[--Ws[wv[i]]] = y[i]; for(t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++) x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++; } return; } int rank[maxn], height[maxn]; void calheight(int *r, int *sa, int n) { int i, j, k = 0; for(i = 1; i <= n; i++) rank[sa[i]] = i; for(i = 0; i < n; height[rank[i++]] = k) for(k ? k-- : 0, j = sa[rank[i] - 1]; r[i + k] == r[j + k]; k++); return; } char in[12333]; int s[maxn], sa[maxn], belong[maxn]; int n; bool check(int mid, int N)//测试长度为mid的满足条件的子串是否存在 { int appear[12]; memset(appear, 0, sizeof(appear)); int cnt = 0; int Min[12], Max[12]; bool con[12]; for(int i = 0; i <= n; i++) Min[i] = 999999; memset(Max, 0, sizeof(Max)); memset(con, 0, sizeof(con)); for(int i = 1; i <= N; i++) if(height[i] >= mid) { appear[belong[sa[i]]] += 1;//记录每一组中各个子串出现的位置 Min[belong[sa[i]]] = min(Min[belong[sa[i]]], sa[i]);//记录出自各个输入串的后缀的起始位置的最前和最后位置 Max[belong[sa[i]]] = max(Max[belong[sa[i]]], sa[i]); if(appear[belong[sa[i]]] >= 2 && Max[belong[sa[i]]] - Min[belong[sa[i]]] >= mid && !con[belong[sa[i]]]) cnt++, con[belong[sa[i]]] = 1;//con数组表示输入的n个串分别是否已经计入 if(cnt == n) return true;//出现两次不重合的位置的串的数量达到n,满足条件 } else { memset(appear, 0, sizeof(appear)); memset(con, 0, sizeof(con)); for(int j = 0; j <= n; j++) Min[j] = 999999; memset(Max, 0, sizeof(Max)); cnt = 0; appear[belong[sa[i]]] = 1; Min[belong[sa[i]]] = min(Min[belong[sa[i]]], sa[i]); Max[belong[sa[i]]] = max(Max[belong[sa[i]]], sa[i]); } return false; } int main() { int t; scanf("%d", &t); while(t-->0) { scanf("%d", &n); int N = 0; for(int i = 1; i <= n; i++) { scanf("%s", in); int len = strlen(in); for(int j = 0; j < len; j++) { belong[N] = i; s[N++] = in[j] - 'a' + 1; } s[N++] = 26 + i; } N--; s[N] = 0; da(s, sa, N + 1, 40); calheight(s, sa, N); int L = 1, R = 10000, ans = 0, mid; /* * 注意到如果存在长度为len的满足条件的子串,那么对于长度小于len的也一定满足条件 * 所以长度len是否可行具有单调性可以用二分查找到长度的最大值 */ while(L <= R) { mid = (L + R) >> 1; if(check(mid, N)) { ans = mid; L = mid + 1; } else R = mid - 1; } printf("%d\n", ans); } return 0; }