HDOJ 5409 CRB and Graph 无向图缩块


无向图缩块后,以n所在的块为根节点,dp找每块中的最大值.

对于每个桥的答案为两块中的较小的最大值和较小的最大值加1

CRB and Graph

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 113    Accepted Submission(s): 41


Problem Description
A connected, undirected graph of  N  vertices and  M  edges is given to CRB.
A pair of vertices ( u v ) ( u  <  v ) is called critical for edge  e  if and only if  u  and  v  become disconnected by removing  e .
CRB’s task is to find a critical pair for each of  M  edges. Help him!
 

Input
There are multiple test cases. The first line of input contains an integer  T , indicating the number of test cases. For each test case:
The first line contains two integers  N M  denoting the number of vertices and the number of edges.
Each of the next  M  lines contains a pair of integers  a  and  b , denoting an undirected edge between  a  and  b .
1 ≤  T  ≤ 12
1 ≤  N M  ≤  105
1 ≤  a b  ≤  N
All given graphs are connected.
There are neither multiple edges nor self loops, i.e. the graph is simple.

 

Output
For each test case, output  M  lines,  i -th of them should contain two integers  u  and  v , denoting a critical pair ( u v ) for the  i -th edge in the input.
If no critical pair exists, output "0 0" for that edge.
If multiple critical pairs exist, output the pair with largest  u . If still ambiguous, output the pair with smallest  v .
 

Sample Input
   
   
   
   
2 3 2 3 1 2 3 3 3 1 2 2 3 3 1
 

Sample Output
   
   
   
   
1 2 2 3 0 0 0 0 0 0
 

Author
KUT(DPRK)
 

Source
2015 Multi-University Training Contest 10
 




/* ***********************************************
Author        :CKboss
Created Time  :2015年08月22日 星期六 10时24分13秒
File Name     :HDOJ5409.cpp
************************************************ */

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map>

using namespace std;

const int maxn=100100;

typedef long long int LL;
typedef pair<int,int> pII;

struct Edge
{
	int from,to,next,id;
}edge[maxn*2];

int Adj[maxn],Size,n,m;

void init()
{
	Size=0; memset(Adj,-1,sizeof(Adj));
}

void Add_Edge(int u,int v,int id)
{
	edge[Size].from=u;
	edge[Size].id=id;
	edge[Size].to=v;
	edge[Size].next=Adj[u];
	Adj[u]=Size++;
}

int Low[maxn],DFN[maxn],Stack[maxn],Belong[maxn];
int Index,top,scc;
bool Instack[maxn],vis[maxn],ve[maxn*2];

void Tarjan(int u,int fa)
{
	int v;
	Low[u]=DFN[u]=++Index;
	Stack[top++]=u;
	Instack[u]=true;

	for(int i=Adj[u];~i;i=edge[i].next)
	{
		v=edge[i].to;
		if(v==fa&&ve[edge[i].id]) continue;
		ve[edge[i].id]=true;
		if(!DFN[v])
		{
			Tarjan(v,u);
			Low[u]=min(Low[u],Low[v]);
		}
		else
		{
			Low[u]=min(Low[u],DFN[v]);
		}
	}
	if(Low[u]==DFN[u])	
	{
		scc++;
		do
		{
			v=Stack[--top];
			Belong[v]=scc;
			Instack[v]=false;
		}while(v!=u);
	}
}

void scc_solve()
{
	memset(DFN,0,sizeof(DFN));
	memset(Instack,0,sizeof(Instack));

	Index=scc=top=0;
	memset(ve,0,sizeof(ve));

	for(int i=1;i<=n;i++)
	{
		if(!DFN[i]) Tarjan(i,i);
	}
}

int value[maxn];
vector<pII> G[maxn];
int ans[maxn][2];
int bian[maxn][2];
int MX[maxn];

void dfs(int u,int fa)
{
	MX[u]=value[u];
	for(int i=0,sz=G[u].size();i<sz;i++)
	{
		int v=G[u][i].first;
		if(v==fa) continue;
		dfs(v,u);
		MX[u]=max(MX[u],MX[v]);
	}
}

int main()
{
	//freopen("in.txt","r",stdin);
	//freopen("out.txt","w",stdout);

	int T_T;
	scanf("%d",&T_T);
	while(T_T--)
	{
		scanf("%d%d",&n,&m);
		init();
		for(int i=0;i<m;i++)
		{
			int a,b;
			scanf("%d%d",&a,&b);
			bian[i][0]=a; bian[i][1]=b;
			Add_Edge(a,b,i); Add_Edge(b,a,i);
		}
		scc_solve();

		/***************REBUILD**********************/

		memset(value,0,sizeof(value));
		memset(ans,0,sizeof(ans));
		int root=0;

		for(int i=1;i<=n;i++)
		{
			G[i].clear();
			int b=Belong[i];
			value[b]=max(value[b],i);
			if(value[b]==n) root=b;
		}

		//for(int i=1;i<=scc;i++) cout<<i<<" value: "<<value[i]<<endl;

		for(int i=0;i<m;i++)
		{
			int u=Belong[bian[i][0]];
			int v=Belong[bian[i][1]];
			if(u==v) continue;
			G[u].push_back(make_pair(v,i)); G[v].push_back(make_pair(u,i));
		}

		dfs(root,root);

		//for(int i=1;i<=scc;i++) { cout<<i<<" mx: "<<MX[i]<<endl; }

		for(int i=0;i<m;i++)
		{
			int u=Belong[bian[i][0]];
			int v=Belong[bian[i][1]];
			if(u==v) 
			{
				puts("0 0"); continue;
			}
			else
			{
				int mx=min(MX[u],MX[v]);
				printf("%d %d\n",mx,mx+1);
			}
		}
	}
    
    return 0;
}




你可能感兴趣的:(HDOJ 5409 CRB and Graph 无向图缩块)