Time limit: 3.000 seconds
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=467&page=show_problem&problem=1833
A pair of numbers has a unique LCM but a single number can be the LCM of more than one possible pairs. For example 12 is the LCM of (1, 12), (2, 12), (3,4) etc. For a given positive integer N, the number of different integer pairs with LCM is equal to N can be called the LCMcardinality of that number N. In this problem your job is to find out the LCM cardinality of a number.
The input file contains at most 101 lines of inputs. Each line contains an integer N (0<N<=2*109). Input is terminated by a line containing a single zero. This line should not be processed.
For each line of input except the last one produce one line of output. This line contains two integers N and C. Here N is the input number and Cis its cardinality. These two numbers are separated by a single space.
2 12 24 101101291 0 |
2 2 12 8 24 11 101101291 5 |
思路:
1. 设n=lcm(a,b)=(p1^r1)*(p2^r2)*(p3^r3)…(pm^rm)
又设a=(p1^a1)*(p2^a2)*(p3^a3)…(pm^am),b=(p1^b1)*(p2^b2)*(p3^b3)…(pm^bm)
则由lcm的定义有ri=max{ai,bi}
所以对于每个ri,ai和bi中至少有一个要取ri
2. 对于ai取ri的情况,bi可以取[0,ri-1]的任意整数,这有ri种情况;bi取ri的情况同样是ri种。最后加上ai和bi都取ri的情况,共有(2*ri+1)种情况
3. 最后,由于这么考虑把(a,b)和(b,a)算重复了,但(n,n)的情况只算了一遍,所以最后要ans=(ans+1)/2=ans/2+1(因为ans是奇数)
4. 优化:只考虑√n范围内的质数,但这样会存在漏掉一个大质数的情况(比如n=2*101等),这个大质数的幂次只能为1(即少算了一个*(2*1+1)),所以在这种情况发生时要补上ans*=3,写成位运算就是ans+=ans<<1了。
另附:两道此题的扩展题。
NOIP2001普及组
HDU 4497
完整代码:
/*0.012s*/ #include <cstdio> int main(void) { long long n, nn, ans, i, count; while (scanf("%lld", &n), n) { nn = n; ans = 1; for (i = 2; i * i <= n; i += 2)///不用求素数,因为范围很小(注意n在不断减小) { if (n % i == 0) { count = 0; while (n % i == 0) { n /= i; ++count; } ans *= (count << 1) + 1; } if (i == 2) --i;///小技巧 } if (n > 1) ans += ans << 1; ans = (ans >> 1) + 1; printf("%lld %lld\n", nn, ans); } return 0; }