UVa 10892 LCM Cardinality (数论&素因子分解)

10892 - LCM Cardinality

Time limit: 3.000 seconds

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=467&page=show_problem&problem=1833

A pair of numbers has a unique LCM but a single number can be the LCM of more than one possible pairs. For example 12 is the LCM of (1, 12)(2, 12)(3,4) etc. For a given positive integer N, the number of different integer pairs with LCM is equal to N can be called the LCMcardinality of that number N. In this problem your job is to find out the LCM cardinality of a number.

Input

The input file contains at most 101 lines of inputs. Each line contains an integer N (0<N<=2*109). Input is terminated by a line containing a single zero. This line should not be processed.

Output

For each line of input except the last one produce one line of output. This line contains two integers N and C. Here N is the input number and Cis its cardinality. These two numbers are separated by a single space.

Sample Input      Output for Sample Input

2
12
24
101101291        
0                

2 2

12 8

24 11

101101291 5


思路:

1. 设n=lcm(a,b)=(p1^r1)*(p2^r2)*(p3^r3)…(pm^rm)

又设a=(p1^a1)*(p2^a2)*(p3^a3)…(pm^am),b=(p1^b1)*(p2^b2)*(p3^b3)…(pm^bm)

则由lcm的定义有ri=max{ai,bi}

所以对于每个ri,ai和bi中至少有一个要取ri

2. 对于ai取ri的情况,bi可以取[0,ri-1]的任意整数,这有ri种情况;bi取ri的情况同样是ri种。最后加上ai和bi都取ri的情况,共有(2*ri+1)种情况

3. 最后,由于这么考虑把(a,b)和(b,a)算重复了,但(n,n)的情况只算了一遍,所以最后要ans=(ans+1)/2=ans/2+1(因为ans是奇数)

4. 优化:只考虑√n范围内的质数,但这样会存在漏掉一个大质数的情况(比如n=2*101等),这个大质数的幂次只能为1(即少算了一个*(2*1+1)),所以在这种情况发生时要补上ans*=3,写成位运算就是ans+=ans<<1了。


另附:两道此题的扩展题。

NOIP2001普及组

HDU 4497


完整代码:

/*0.012s*/

#include <cstdio>

int main(void)
{
	long long n, nn, ans, i, count;
	while (scanf("%lld", &n), n)
	{
		nn = n;
		ans = 1;
		for (i = 2; i * i <= n; i += 2)///不用求素数,因为范围很小(注意n在不断减小)
		{
			if (n % i == 0)
			{
				count = 0;
				while (n % i == 0)
				{
					n /= i;
					++count;
				}
				ans *= (count << 1) + 1;
			}
			if (i == 2)
				--i;///小技巧
		}
		if (n > 1)
			ans += ans << 1;
		ans = (ans >> 1) + 1;
		printf("%lld %lld\n", nn, ans);
	}
	return 0;
}

你可能感兴趣的:(C++,数论,ACM,uva)