SPOJ 375 Query on a tree(初学树链剖分)

QTREE - Query on a tree

no tags 

You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.

We will ask you to perfrom some instructions of the following form:

  • CHANGE i ti : change the cost of the i-th edge to ti
    or
  • QUERY a b : ask for the maximum edge cost on the path from node a to node b

Input

The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.

For each test case:

  • In the first line there is an integer N (N <= 10000),
  • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between ab of cost c (c <= 1000000),
  • The next lines contain instructions "CHANGE i ti" or "QUERY a b",
  • The end of each test case is signified by the string "DONE".

There is one blank line between successive tests.

Output

For each "QUERY" operation, write one integer representing its result.

Example

Input:
1

3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE

Output:
1
3


大致题意:一棵1e4节点的树,进行两种操作,1.把第i条边权值改为x 2.查询a到b路径上的最大边权


树链剖分教程http://blog.sina.com.cn/s/blog_7a1746820100wp67.html

学了树链剖分,这种算法是把树hash到了几段连续的区间上,分重链和轻链为连续的区间,可以证明任何两点间路径都可以分为logn复杂度的重链和轻链,也就是连续区间,然后再用线段树等算法在这些区间上处理问题


显然本题也是这样,剖分过程On复杂度,两次dfs,用在logn的复杂度套上线段树nlogn,总复杂度是nlogn*logn

14620018 2015-07-07 17:10:34 ka Query on a tree acceptededit    ideone it 0.44 3.9M C++ 4.9
#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#include <cstdio>
#include <ctime>
#include <bitset>
#include <algorithm>
#define SZ(x) ((int)(x).size())
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define refeach(i, v) for (__typeof((v).rbegin()) i = (v).rbegin(); i != (v).rend(); ++ i)
#define REP(i,n) for ( int i=1; i<=int(n); i++ )
using namespace std;
typedef long long ll;

const int N = 1e4+100;
struct Edge
{
    int u,v,w,nxt;
    Edge(){}
    Edge(int u,int v,int w,int nxt) : u(u),v(v),w(w),nxt(nxt) {}
}es[N<<1];
int head[N];
int ecnt;
int n;
inline void add_edge(int u,int v,int w)
{
    es[++ecnt] = Edge(u,v,w,head[u]);
    head[u] = ecnt;
    es[ecnt+n] = Edge(v,u,w,head[v]);
    head[v] = ecnt+n;
}

int dep[N],son[N],sz[N],fa[N];
void dfs1(int u)
{
    dep[u] = dep[fa[u]]+1;
    son[u] = 0,sz[u] = 1;
    for(int i = head[u];~i;i=es[i].nxt)
    {
        int v = es[i].v;
        if(fa[u] == v) continue;
        fa[v] = u;
        dfs1(v);
        sz[u] += sz[v];
        if(sz[v] > sz[son[u]]) son[u] = v;
    }
}

int tp[N],tid[N];
int indx;
void dfs2(int u,int ance)
{
    tid[u] = ++indx;
    tp[u] = ance;
    if(son[u]) dfs2(son[u],ance);
    for(int i = head[u];~i;i=es[i].nxt)
    {
        int v = es[i].v;
        if(v == fa[u]) continue;
        if(v != son[u]) dfs2(v,v);
    }
}
#define root 1,indx,1
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
int maxn[N<<2];
inline void pushup(int rt)
{
    maxn[rt] = max(maxn[rt<<1],maxn[rt<<1|1]);
}
void update(int pos,int x,int l,int r,int rt)
{
    if(l == r)
    {
        maxn[rt] = x;
        return ;
    }
    int m = (l+r)>>1;
    if(pos <= m) update(pos,x,lson);
    else update(pos,x,rson);
    pushup(rt);
}
int query(int L,int R,int l,int r,int rt)
{
    if(L <= l && r <= R) return maxn[rt];
    int maxx = 0;
    int m = (l+r)>>1;
    if(L <= m) maxx = max(maxx,query(L,R,lson));
    if(R >= m+1) maxx = max(maxx,query(L,R,rson));
    return maxx;
}

int solve(int u,int v)
{
    int anceu = tp[u],ancev = tp[v];
    int maxx = 0;
    while(anceu != ancev)
    {
        if(dep[anceu] < dep[ancev]) swap(anceu,ancev),swap(u,v);
        maxx = max(maxx,query(tid[anceu],tid[u],root));
        u = fa[anceu];
        anceu = tp[u];
    }
    if(u == v) return maxx;
    if(dep[u] < dep[v]) return max(maxx,query(tid[son[u]],tid[v],root));
    else return max(maxx,query(tid[son[v]],tid[u],root));
}
void ini()
{
    memset(head,-1,sizeof(head));
    indx = ecnt = 0;
    memset(maxn,0,sizeof(maxn));
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        ini();
        scanf("%d",&n);
        REP(i,n-1)
        {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            add_edge(u,v,w);
        }
        char op[20];
        dfs1(1);
        dfs2(1,1);
        REP(i,n-1)
        {
            int u = es[i].u,v = es[i].v , w = es[i].w;
            if(dep[v] < dep[u]) swap(es[i].u,es[i].v);
            update(tid[es[i].v],w,root);
        }
        while(scanf("%s",op))
        {
            if(op[0] == 'D') break;
            if(op[0] == 'Q')
            {
                int u,v;
                scanf("%d%d",&u,&v);
                printf("%d\n",solve(u,v));
            }
            else
            {
                int id,x;
                scanf("%d%d",&id,&x);
                update(tid[es[id].v],x,root);
            }
        }
    }
}



你可能感兴趣的:(SPOJ 375 Query on a tree(初学树链剖分))