传送门:【POJ】2676 Sudoku 【数独】
题目分析:耶~第一道数独写粗来啦~~~~
数独转化为精确覆盖问题看这篇文章就好啦,我也不多费口舌了
代码如下:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std ; #define REP( i , a , b ) for ( int i = a ; i < b ; ++ i ) #define REV( i , a , b ) for ( int i = a - 1 ; i >= b ; -- i ) #define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i ) #define FOV( i , a , b ) for ( int i = a ; i >= b ; -- i ) #define REC( i , A , o ) for ( int i = A[o] ; i != o ; i = A[i] ) #define CLR( a , x ) memset ( a , x , sizeof a ) const int MAXN = 325 ; const int MAXM = 730 ; const int MAXNODE = 3000 ; const int INF = 0x3f3f3f3f ; struct DLX { int U[MAXNODE] , D[MAXNODE] , L[MAXNODE] , R[MAXNODE] ; int row[MAXNODE] , col[MAXNODE] ; int S[MAXN] , H[MAXM] ; int deep , ans[MAXN] ; int n , m ; int size ; int G[10][10] ; void init () { CLR ( H , -1 ) ; FOR ( i , 0 , n ) { S[i] = 0 ; U[i] = i ; D[i] = i ; L[i] = i - 1 ; R[i] = i + 1 ; } L[0] = n ; R[n] = 0 ; size = n ; } void link ( int r , int c ) { ++ size ; ++ S[c] ; row[size] = r ; col[size] = c ; U[size] = U[c] ; D[size] = c ; D[U[c]] = size ; U[c] = size ; if ( ~H[r] ) { L[size] = L[H[r]] ; R[size] = H[r] ; L[R[size]] = size ; R[L[size]] = size ; } else H[r] = L[size] = R[size] = size ; } void remove ( int c ) { L[R[c]] = L[c] ; R[L[c]] = R[c] ; REC ( i , D , c ) REC ( j , R , i ) { U[D[j]] = U[j] ; D[U[j]] = D[j] ; -- S[col[j]] ; } } void resume ( int c ) { REC ( i , U , c ) REC ( j , L , i ) { ++ S[col[j]] ; D[U[j]] = j ; U[D[j]] = j ; } R[L[c]] = c ; L[R[c]] = c ; } int dance ( int d ) { if ( R[0] == 0 ) { deep = d ; return 1 ; } int c = R[0] ; REC ( i , R , 0 ) if ( S[c] > S[i] ) c = i ; remove ( c ) ; REC ( i , D , c ) { ans[d] = row[i] ; REC ( j , R , i ) remove ( col[j] ) ; if ( dance ( d + 1 ) ) return 1 ; REC ( j , L , i ) resume ( col[j] ) ; } resume ( c ) ; return 0 ; } void solve () { n = 9 * 9 * 4 ; init () ; REP ( i , 0 , 9 ) REP ( j , 0 , 9 ) scanf ( "%1d" , &G[i][j] ) ; REP ( i , 0 , 9 ) REP ( j , 0 , 9 ) if ( G[i][j] ) { int r = ( i * 9 + j ) * 9 + G[i][j] ; int c1 = i * 9 + j + 1 ; int c2 = 81 + i * 9 + G[i][j] ; int c3 = 162 + j * 9 + G[i][j] ; int c4 = 243 + ( ( i / 3 ) * 3 + ( j / 3 ) ) * 9 + G[i][j] ; link ( r , c1 ) ; link ( r , c2 ) ; link ( r , c3 ) ; link ( r , c4 ) ; S[c1] = S[c2] = S[c3] = S[c4] = -1 ; } REP ( i , 0 , 9 ) REP ( j , 0 , 9 ) if ( !G[i][j] ) FOR ( k , 1 , 9 ) { int r = ( i * 9 + j ) * 9 + k ; int c1 = i * 9 + j + 1 ; int c2 = 81 + i * 9 + k ; int c3 = 162 + j * 9 + k ; int c4 = 243 + ( ( i / 3 ) * 3 + ( j / 3 ) ) * 9 + k ; if ( ~S[c1] && ~S[c2] && ~S[c3] && ~S[c4] ) { link ( r , c1 ) ; link ( r , c2 ) ; link ( r , c3 ) ; link ( r , c4 ) ; } } dance ( 0 ) ; REP ( i , 0 , deep ) { int key = ( ans[i] - 1 ) % 9 + 1 ; int x = ( ans[i] - 1 ) / 9 / 9 + 1 ; int y = ( ans[i] - 1 ) / 9 % 9 + 1 ; G[x][y] = key ; } FOR ( i , 1 , 9 ) { FOR ( j , 1 , 9 ) printf ( "%d" , G[i][j] ) ; printf ( "\n" ) ; } } } dlx ; int main () { int T ; scanf ( "%d" , &T ) ; while ( T -- ) dlx.solve () ; return 0 ; }