Result : Accepted Memory : 1588 KB Time : 203 ms
/* * Author: Gatevin * Created Time: 2014/12/2 17:57:35 * File Name: Asuna.cpp */ #include<iostream> #include<sstream> #include<fstream> #include<vector> #include<list> #include<deque> #include<queue> #include<stack> #include<map> #include<set> #include<bitset> #include<algorithm> #include<cstdio> #include<cstdlib> #include<cstring> #include<cctype> #include<cmath> #include<ctime> #include<iomanip> using namespace std; const double eps(1e-10);//这里刚开始开eps = 1e-8 WA了... typedef long long lint; /* * 很好的一道概率题, 首先不难发现如果用dp[i]表示从节点i到达目标状态需要的步数,有方程: * dp[i] = ∑(dp[j] + 1)/G[i].size()*(1 - K[i] - E[i]) + K[i]*(dp[1] + 0) + E[i]*0; * = ∑(dp[j] + 1)/G[i].size()*(1 - K[i] - E[i]) + K[i]*dp[1] * 其中G[i]为与点i相邻的点组成的vector, K[i]为在i节点被杀死的概率, E[i]为出去的概率,j为与i相邻的点 * 这样对于dp[1~n]一共有n个方程,可见一定是可解的,但是由于n的范围太大,需要递推求解 * 这里由于dp[1]为起点,将其视作整棵树的根节点,那么原来的方程需要写为 * dp[i] = ∑dp[son[i]]/G[i].size()*(1 - K[i] - E[i]) + dp[father[i]]/G[i].size()*(1 - K[i] - E[i]) + K[i]*dp[1] + (1 - K[i] - E[i]) * 其中son[i]是i的子节点,father[i]是i的父节点,那么对于叶子节点 * dp[i] = dp[father[i]]*(1 - K[i] - E[i]) + K[i]*dp[1] + 1 - K[i] - E[i] * (因为对于叶子节点,没有继续下去的儿子,且G[i].size() = 1) * 那么可以发现从叶子节点往上看,每一个儿子节点都可以表示成A*dp[1] + B*dp[father] + C的形式,那么对于一个点的所有子节点 * 不难发现其father是一样的,并且带入当前的father节点可以算出相应的father节点满足的关系那么从叶节点开始后序遍历这棵树即可最终递推出dp[1] * 并且dp[1] = ∑dp[son[1]]/G[1].size()*(1 - 0 - 0) + 0*dp[1] + 1 - 0 - 0 * 于是dp[1]便可以解出 * 这里我的代码是将每个节点的A,B,C参数用dp1表示多少倍dp[1], dpfa表示多少倍其父节点,cons表示常数项 * 递推求解即可 */ double K[10010], E[10010]; vector <int> G[10010]; bool vis[10010]; int father[10010]; int n, x, y; struct Node { double dp1, dpfa, cons; Node(double a = 0, double b = 0, double c = 0) { dp1 = a; dpfa = b; cons = c; } }; Node operator + (Node n1, Node n2) { return Node(n1.dp1 + n2.dp1, n1.dpfa + n2.dpfa, n1.cons + n2.cons); } void dfs(int now) { vis[now] = 1; for(unsigned int i = 0; i < G[now].size(); i++) { if(!vis[G[now][i]]) { father[G[now][i]] = now; dfs(G[now][i]); } } return; } Node solve(int now) { if(G[now].size() == 1) return Node(K[now], 1 - K[now] - E[now], 1 - K[now] - E[now]); Node ret; for(unsigned int i = 0; i < G[now].size(); i++) if(G[now][i] != father[now]) ret = ret + solve(G[now][i]); double tmp = (1 - ret.dpfa/G[now].size()*(1 - K[now] - E[now])); ret.dp1 /= G[now].size(); ret.dp1 *= (1 - K[now] - E[now]); ret.dp1 += K[now]; ret.dpfa = (1 - K[now] - E[now])/G[now].size(); ret.cons /= G[now].size(); ret.cons *= (1 - K[now] - E[now]); ret.cons += 1 - K[now] - E[now]; return Node(ret.dp1/tmp, ret.dpfa/tmp, ret.cons/tmp); } int main() { int t; scanf("%d", &t); for(int cas = 1; cas <= t; cas++) { scanf("%d", &n); for(int i = 1; i <= n; i++) G[i].clear(); for(int i = 1; i <= n - 1; i++) { scanf("%d %d", &x, &y); G[x].push_back(y); G[y].push_back(x); } for(int i = 1; i <= n; i++) { scanf("%d %d", &x, &y); K[i] = x*1.0/100; E[i] = y*1.0/100; } memset(vis, 0, sizeof(vis)); dfs(1); Node one; for(unsigned int i = 0; i < G[1].size(); i++) one = one + solve(G[1][i]); if(G[1].size() - one.dp1 - one.dpfa < eps) { printf("Case %d: impossible\n", cas); continue; } double ans = (one.cons + G[1].size())/(G[1].size() - one.dp1 - one.dpfa); if(ans < eps) printf("Case %d: impossible\n", cas); else printf("Case %d: %.6f\n", cas, ans); } return 0; }