大致思路:
先手始终取出可拆点中的最大值,后手始终取出可拆点中的最小值
所以每次把可拆点放在最大堆和最小堆里,然后每次拆掉一个点,就类似和拓扑排序一样,更新其他点是否可拆
吐槽一下居然是mod 1e9+9..而不是+7
//#pragma comment(linker, "/STACK:1024000000,1024000000") #include <iostream> #include <cstring> #include <cmath> #include <queue> #include <stack> #include <map> #include <set> #include <string> #include <vector> #include <cstdio> #include <ctime> #include <bitset> #include <algorithm> #define SZ(x) ((int)(x).size()) #define ALL(v) (v).begin(), (v).end() #define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i) #define reveach(i, v) for (__typeof((v).rbegin()) i = (v).rbegin(); i != (v).rend(); ++ i) #define REP(i,n) for ( int i=1; i<=int(n); i++ ) #define rep(i,n) for ( int i=0; i<int(n); i++ ) using namespace std; typedef long long ll; #define X first #define Y second typedef pair<int,int> pii; template <class T> inline bool RD(T &ret) { char c; int sgn; if (c = getchar(), c == EOF) return 0; while (c != '-' && (c<'0' || c>'9')) c = getchar(); sgn = (c == '-') ? -1 : 1; ret = (c == '-') ? 0 : (c - '0'); while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0'); ret *= sgn; return 1; } template <class T> inline void PT(T x) { if (x < 0) { putchar('-'); x = -x; } if (x > 9) pt(x / 10); putchar(x % 10 + '0'); } const int N = 1e5+100; map<pii,int>id; pii poi[N]; int in[N]; bool vis[N]; vector<int>G[N]; priority_queue<int> qma; priority_queue<int,vector<int>,greater<int> > qmi; bool ok(int u,int v){ int sx = poi[u].X, sy = poi[u].Y; int x = poi[v].X, y = poi[v].Y; if( sx == x-1 && sy == y-1 ) return true; if( sx == x && sy == y-1) return true; if( sx == x+1 && sy == y-1 ) return true; return false; } bool judge(int u){ foreach(it,G[u]){ int v = *it; if( vis[v] || poi[v].Y == 0 || ok(v,u) ) continue; if( in[v] == 1) return false; } return true; } vector<int> ans; bool inqmi[N],inqma[N]; const ll mod = 1e9+9; int main(){ int m; cin>>m; int n = m; rep(i,n){ int x,y; RD(x),RD(y); id[pii(x,y)] = i; poi[i] = pii(x,y); } rep(u,n){ int x = poi[u].X, y = poi[u].Y; if( id.count(pii(x-1,y-1)) ){ int v = id[pii(x-1,y-1)]; G[u].push_back(v); G[v].push_back(u); in[u]++; } if( id.count(pii(x,y-1))){ int v = id[pii(x,y-1)]; G[u].push_back(v); G[v].push_back(u); in[u]++; } if( id.count(pii(x+1,y-1)) ){ int v = id[pii(x+1,y-1)]; G[u].push_back(v); G[v].push_back(u); in[u]++; } } rep(i,n){ if( judge(i) ) { qmi.push(i),qma.push(i); inqmi[i] = inqma[i] = 1; } } REP(CNT,n){ if( CNT&1 ){ int u; while(true){ u = qma.top(); qma.pop(); inqma[u] = 0; if( vis[u] ) continue; if( judge(u) ) break; } vis[u] = 1; ans.push_back(u); foreach(it,G[u]) { int v = *it; if( vis[v] ) continue; if( ok(u,v) ) in[v]--; else{ if(judge(v)) { if( !inqma[v] ) qma.push(v),inqma[v] = 1; if( !inqmi[v] ) qmi.push(v),inqmi[v] = 1; } } } }else{ int u; while(true){ u = qmi.top(); qmi.pop(); inqmi[u] = 0; if( vis[u]) continue; if( judge(u) ) break; } ans.push_back(u); vis[u] = 1; foreach(it,G[u]){ int v = *it; if( vis[v] ) continue; if( ok(u,v) ) in[v]--; else{ if(judge(v)){ if( !inqma[v] ) qma.push(v),inqma[v] = 1; if( !inqmi[v] ) qmi.push(v),inqmi[v] = 1; } } } } } ll res = 0; ll tmp = 1; reveach(it,ans){ res = (res+tmp*(*it))%mod; tmp = tmp*(ll)m%mod; } cout<<res<<endl; }