浅析SkipList跳跃表原理及代码
SkipList在leveldb以及lucence中都广为使用,是比较高效的数据结构。由于它的代码以及原理实现的简单性,更为人们所接受。我们首先看看SkipList的定义,为什么叫跳跃表?
“ Skip lists are data structures that use probabilistic balancing rather than strictly enforced balancing. As a result, the algorithms for insertion and deletion in skip lists are much simpler and significantly faster than equivalent algorithms for balanced trees. ”
译文:跳跃表使用概率均衡技术而不是使用强制性均衡,因此,对于插入和删除结点比传统上的平衡树算法更为简洁高效。
我们看一个图就能明白,什么是跳跃表,如图1所示:
图1:跳跃表简单示例
如上图所示,是一个即为简单的跳跃表。传统意义的单链表是一个线性结构,向有序的链表中插入一个节点需要O(n)的时间,查找操作需要O(n)的时间。如果我们使用图1所示的跳跃表,就可以减少查找所需时间为O(n/2),因为我们可以先通过每个节点的最上面的指针先进行查找,这样子就能跳过一半的节点。比如我们想查找19,首先和6比较,大于6之后,在和9进行比较,然后在和12进行比较......最后比较到21的时候,发现21大于19,说明查找的点在17和21之间,从这个过程中,我们可以看出,查找的时候跳过了3、7、12等点,因此查找的复杂度为O(n/2)。查找的过程如下图2:
图2:跳跃表查找操作简单示例
其实,上面基本上就是跳跃表的思想,每一个结点不单单只包含指向下一个结点的指针,可能包含很多个指向后续结点的指针,这样就可以跳过一些不必要的结点,从而加快查找、删除等操作。对于一个链表内每一个结点包含多少个指向后续元素的指针,这个过程是通过一个随机函数生成器得到,这样子就构成了一个跳跃表。这就是为什么论文“Skip Lists : A Probabilistic Alternative to Balanced Trees ”中有“概率”的原因了,就是通过随机生成一个结点中指向后续结点的指针数目。随机生成的跳跃表可能如下图3所示:
图3:随机生成的跳跃表
跳跃表的大体原理,我们就讲述到这里。下面我们将从如下几个方面来探讨跳跃表的操作:
1、重要数据结构定义
2、初始化表
3、查找
4、插入
5、删除
6、随机数生成器
7、释放表
8、性能比较
(一)重要数据结构定义
从图3中,我们可以看出一个跳跃表是由结点组成,结点之间通过指针进行链接。因此我们定义如下数据结构:
//定义key和value的类型 typedef int KeyType; typedef int ValueType; //定义结点 typedef struct nodeStructure* Node; struct nodeStructure{ KeyType key; ValueType value; Node forward[1]; }; //定义跳跃表 typedef struct listStructure* List; struct listStructure{ int level; Node header; };
(二)初始化表
初始化表主要包括两个方面,首先就是header节点和NIL结点的申请,其次就是List资源的申请。
void SkipList::NewList(){ //设置NIL结点 NewNodeWithLevel(0, NIL_); NIL_->key = 0x7fffffff; //设置链表List list_ = (List)malloc(sizeof(listStructure)); list_->level = 0; //设置头结点 NewNodeWithLevel(MAX_LEVEL,list_->header); for(int i = 0; i < MAX_LEVEL; ++i){ list_->header->forward[i] = NIL_; } //设置链表元素的数目 size_ = 0; } void SkipList::NewNodeWithLevel(const int& level, Node& node){ //新结点空间大小 int total_size = sizeof(nodeStructure) + level*sizeof(Node); //申请空间 node = (Node)malloc(total_size); assert(node != NULL); }
其中,NewNodeWithLevel是申请结点(总共level层)所需的内存空间。NIL_节点会在后续全部代码实现中可以看到。
(三)查找
查找就是给定一个key,查找这个key是否出现在跳跃表中,如果出现,则返回其值,如果不存在,则返回不存在。我们结合一个图就是讲解查找操作,如下图4所示:
图4:查找操作前的跳跃表
如果我们想查找19是否存在?如何查找呢?我们从头结点开始,首先和9进行判断,此时大于9,然后和21进行判断,小于21,此时这个值肯定在9结点和21结点之间,此时,我们和17进行判断,大于17,然后和21进行判断,小于21,此时肯定在17结点和21结点之间,此时和19进行判断,找到了。具体的示意图如图5所示:
图5:查找操作后的跳跃表
bool SkipList::Search(const KeyType& key, ValueType& value){ Node x = list_->header; int i; for(i = list_->level; i >= 0; --i){ while(x->forward[i]->key < key){ x = x->forward[i]; } } x = x->forward[0]; if(x->key == key){ value = x->value; return true; }else{ return false; } }
插入包含如下几个操作:1、查找到需要插入的位置 2、申请新的结点 3、调整指针。
我们结合下图6进行讲解,查找如下图的灰色的线所示 申请新的结点如17结点所示, 调整指向新结点17的指针以及17结点指向后续结点的指针。这里有一个小技巧,就是使用update数组保存大于17结点的位置,这样如果插入17结点的话,就指针调整update数组和17结点的指针、17结点和update数组指向的结点的指针。update数组的内容如红线所示,这些位置才是有可能更新指针的位置。
bool SkipList::Insert(const KeyType& key, const ValueType& value){ Node update[MAX_LEVEL]; int i; Node x = list_->header; //寻找key所要插入的位置 //保存大于key的位置信息 for(i = list_->level; i >= 0; --i){ while(x->forward[i]->key < key){ x = x->forward[i]; } update[i] = x; } x = x->forward[0]; //如果key已经存在 if(x->key == key){ x->value = value; return false; }else{ //随机生成新结点的层数 int level = RandomLevel(); //为了节省空间,采用比当前最大层数加1的策略 if(level > list_->level){ level = ++list_->level; update[level] = list_->header; } //申请新的结点 Node newNode; NewNodeWithLevel(level, newNode); newNode->key = key; newNode->value = value; //调整forward指针 for(int i = level; i >= 0; --i){ x = update[i]; newNode->forward[i] = x->forward[i]; x->forward[i] = newNode; } //更新元素数目 ++size_; return true; } }
删除操作类似于插入操作,包含如下3步:1、查找到需要删除的结点 2、删除结点 3、调整指针
bool SkipList::Delete(const KeyType& key, ValueType& value){ Node update[MAX_LEVEL]; int i; Node x = list_->header; //寻找要删除的结点 for(i = list_->level; i >= 0; --i){ while(x->forward[i]->key < key){ x = x->forward[i]; } update[i] = x; } x = x->forward[0]; //结点不存在 if(x->key != key){ return false; }else{ value = x->value; //调整指针 for(i = 0; i <= list_->level; ++i){ if(update[i]->forward[i] != x) break; update[i]->forward[i] = x->forward[i]; } //删除结点 free(x); //更新level的值,有可能会变化,造成空间的浪费 while(list_->level > 0 && list_->header->forward[list_->level] == NIL_){ --list_->level; } //更新链表元素数目 --size_; return true; } }
再向跳跃表中插入新的结点时候,我们需要生成该结点的层数,使用的就是随机数生成器,随机的生成一个层数。这部分严格意义上讲,不属于跳跃表的一部分。随机数生成器说简单很简单,说难很也很难,看你究竟是否想生成随机的数。可以采用c语言中srand以及rand函数,也可以自己设计随机数生成器。