题目:
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1]
, return 6
.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
分析与解答:这个应该是到目前为止我在leetcode上面做过最难的题目了。解决本题的关键是找到其中的规律,假设某一个横坐标对应的高度为H,那么它能容纳的水量取决于它左右两边柱子高度的最大值maxleft和maxright,即储水量 = min(maxleft,maxright)-H ,当然了,如果小于0就是说储存不了睡。找到了规律之后,就在于怎样设计算法了。整个数轴上的最大值maxNum是一个非常特殊的存在,它把数轴分成了两部分,它是左边部分的maxRight,也是右边部分的maxLeft。想到这里,题目也以一种非常优雅的方式迎刃而解了,首次遍历找到最大值,然后分别从左和右开始向其靠拢遍历,同时也计算每个位置的蓄水量。时空复杂度也是很优雅地O(n)和O(1)。
class Solution { public: int trap(int A[], int n) { int maxIndex = -1, maxNum = -1, maxLeft = -1, maxRight = -1, trapSum = 0, tempMax = 0; for(int i = 0; i < n; ++i) {//找到数组中最大值 if(A[i] > maxNum) { maxIndex = i; maxNum = A[i]; } } maxRight = maxNum; maxLeft = -1; for(int i = 0; i < maxIndex; ++i) { if(A[i] > maxLeft) { maxLeft = A[i]; continue; } trapSum += maxLeft - A[i]; } maxLeft = maxNum; maxRight = -1; for(int i = n - 1; i > maxIndex; --i) { if(A[i] > maxRight) { maxRight = A[i]; continue; } trapSum += maxRight - A[i]; } return trapSum; } };