LeetCode 42.Trapping Rain Water

题目:

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.

For example, 
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.


The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!

分析与解答:这个应该是到目前为止我在leetcode上面做过最难的题目了。解决本题的关键是找到其中的规律,假设某一个横坐标对应的高度为H,那么它能容纳的水量取决于它左右两边柱子高度的最大值maxleft和maxright,即储水量 =  min(maxleft,maxright)-H ,当然了,如果小于0就是说储存不了睡。找到了规律之后,就在于怎样设计算法了。整个数轴上的最大值maxNum是一个非常特殊的存在,它把数轴分成了两部分,它是左边部分的maxRight,也是右边部分的maxLeft。想到这里,题目也以一种非常优雅的方式迎刃而解了,首次遍历找到最大值,然后分别从左和右开始向其靠拢遍历,同时也计算每个位置的蓄水量。时空复杂度也是很优雅地O(n)和O(1)。

class Solution {
  public:
    int trap(int A[], int n) {
        int maxIndex = -1, maxNum = -1, maxLeft = -1, maxRight = -1, trapSum = 0, tempMax = 0;
        for(int i = 0; i < n; ++i) {//找到数组中最大值
            if(A[i] > maxNum) {
                maxIndex = i;
                maxNum = A[i];
            }
        }
        maxRight = maxNum;
        maxLeft = -1;
        for(int i = 0; i < maxIndex; ++i) {
            if(A[i] > maxLeft) {
                maxLeft = A[i];
                continue;
            }
            trapSum += maxLeft - A[i];
        }
        maxLeft = maxNum;
        maxRight = -1;
        for(int i = n - 1; i > maxIndex; --i) {
            if(A[i] > maxRight) {
                maxRight = A[i];
                continue;
            }
            trapSum += maxRight - A[i];
        }
        return trapSum;
    }
};


你可能感兴趣的:(array,Two,Pointers)