基于opencv的CLAHE(3)

//引用自忘记哪里的程序了
#include "stdafx.h"
#include "cv.h"
#include "highgui.h"
#include "math.h"
#include <iostream>
using std::cout;
using std::endl;
using std::sort;

#define B(image,x,y)((uchar*)(image->imageData+image->widthStep*(y)))[(x*3)]//B
#define G(image,x,y)((uchar*)(image->imageData+image->widthStep*(y)))[(x*3)+1]//G
#define R(image,x,y)((uchar*)(image->imageData+image->widthStep*(y)))[(x*3)+2]//R
#define S(image,x,y)((uchar*)(image->imageData+image->widthStep*(y)))[(x)]		//S



void cvSharp(IplImage* &src)
{
	
	IplImage *dst=NULL;
	IplImage *dst1=NULL;
	
	dst=cvCloneImage(src);
	int m,m1,m2;
	int i,j;
	dst1=cvCloneImage(dst);
	int templt[9]={-1,-1,-1,-1,8,-1,-1,-1,-1};
	int x,y;
	int scale;
	int size=3;
	scale = 3;//设定衰减因子
	//依次对源图像的每个像素进行处理
	for(j=size/2;j<dst1->height-size/2;j++)
		for(i=size/2;i<dst1->width-size/2;i++)
		{
			m=0;	
			m1=0;
			m2=0;
			for(x=0;x<size;x++)
				for(y=0;y<size;y++)
				{
					m+=B(dst1,(i-size/2+x),(j-size/2+y))*templt[x*size+y];
					m1+=G(dst1,(i-size/2+x),(j-size/2+y))*templt[x*size+y];
					m2+=R(dst1,(i-size/2+x),(j-size/2+y))*templt[x*size+y];
				}
				m/= scale;
				//对中心像素进行增强
				m=B(dst,i,j)+m;
				//过限处理
				m = m>255?255:m;    
				m = m<0?0:m;

				m1/= scale;
				//对中心像素进行增强
				m1=G(dst,i,j)+m1;
				//过限处理
				m1 = m1>255?255:m1;    
				m1 = m1<0?0:m1;

				m2/= scale;
				//对中心像素进行增强
				m2=R(dst,i,j)+m2;
				//过限处理
				m2 = m2>255?255:m2;    
				m2 = m2<0?0:m2;
				B(dst1,i,j)=m;
				G(dst1,i,j)=m1;
				R(dst1,i,j)=m2;

		}
	
}

你可能感兴趣的:(image,DST)