题意分析:
N个客人,第i个在时间si到达,ei离开,点了ni份烤肉,每份需要ti的时间烤熟,厨师每分钟最多烤M块肉,客人需要在ei时间前拿到烤肉,问:厨师是否能满足所有客人的需求?
解题思路:
si和ei的区间范围灰常大= =,考虑将区间离散化。源点和客人i连一条ni*ti的边,客人和自己规定时间范围内的离散后区间连一条INF的边,离散后的区间和汇点连一条区间长度(ei - si)*M的边(因为在ei前需要烤完,所以不需要+1),最后求解最大流是否等于所有顾客的需求之和即可。
个人感受:
阿西吧,你以为你会了HDU 3572这题就没问题啦?naive= =
具体代码如下:
#include<algorithm> #include<cctype> #include<cmath> #include<cstdio> #include<cstring> #include<iomanip> #include<iostream> #include<map> #include<queue> #include<set> #include<sstream> #include<stack> #include<string> #define lowbit(x) (x & (-x)) #define root 1, n, 1 #define lson l, m, rt << 1 #define rson m + 1, r, rt << 1 | 1 #define ll long long #define pr(x) cout << #x << " = " << (x) << '\n'; using namespace std; const int MAXN = 1010;//点数的最大值 const int MAXM = 4e5;//边数的最大值 const int INF = 0x3f3f3f3f; struct Edge{ int to,next,cap,flow; }edge[MAXM];//注意是MAXM int tol; int head[MAXN]; int gap[MAXN],dep[MAXN],cur[MAXN]; void addedge(int u,int v,int w,int rw = 0) { edge[tol].to = v; edge[tol].cap = w; edge[tol].flow = 0; edge[tol].next = head[u]; head[u] = tol++; edge[tol].to = u; edge[tol].cap = rw; edge[tol].flow = 0; edge[tol].next = head[v]; head[v] = tol++; } int Q[MAXN]; void BFS(int start,int end) { memset(dep,-1,sizeof(dep)); memset(gap,0,sizeof(gap)); gap[0] = 1; int front = 0, rear = 0; dep[end] = 0; Q[rear++] = end; while(front != rear) { int u = Q[front++]; for(int i = head[u]; i != -1; i = edge[i].next) { int v = edge[i].to; if(dep[v] != -1)continue; Q[rear++] = v; dep[v] = dep[u] + 1; gap[dep[v]]++; } } } int S[MAXN]; int sap(int start,int end,int N) { BFS(start,end); memcpy(cur,head,sizeof(head)); int top = 0; int u = start; int ans = 0; while(dep[start] < N) { if(u == end) { int Min = INF; int inser; for(int i = 0;i < top;i++) if(Min > edge[S[i]].cap - edge[S[i]].flow) { Min = edge[S[i]].cap - edge[S[i]].flow; inser = i; } for(int i = 0;i < top;i++) { edge[S[i]].flow += Min; edge[S[i]^1].flow -= Min; } ans += Min; top = inser; u = edge[S[top]^1].to; continue; } bool flag = false; int v; for(int i = cur[u]; i != -1; i = edge[i].next) { v = edge[i].to; if(edge[i].cap - edge[i].flow && dep[v]+1 == dep[u]) { flag = true; cur[u] = i; break; } } if(flag) { S[top++] = cur[u]; u = v; continue; } int Min = N; for(int i = head[u]; i != -1; i = edge[i].next) if(edge[i].cap - edge[i].flow && dep[edge[i].to] < Min) { Min = dep[edge[i].to]; cur[u] = i; } gap[dep[u]]--; if(!gap[dep[u]]) return ans; dep[u] = Min + 1; gap[dep[u]]++; if(u != start)u = edge[S[--top]^1].to; } return ans; } void init() { tol = 0; memset(head,-1,sizeof(head)); } int s[MAXN], n[MAXN], e[MAXN], t[MAXN], tt[MAXN]; int main() { #ifdef LOCAL freopen("C:\\Users\\apple\\Desktop\\in.txt", "r", stdin); #endif int N, M; while (~scanf("%d%d", &N, &M)) { init(); int src = 0, des = 0, sum = 0, cnt = 0; for (int i = 1; i <= N; ++i) { scanf("%d%d%d%d", &s[i], &n[i], &e[i], &t[i]); addedge(src, i, n[i] * t[i]); sum += n[i] * t[i]; tt[cnt++] = s[i]; tt[cnt++] = e[i]; } sort(tt, tt + cnt); cnt = unique(tt, tt + cnt) - tt; des = cnt + N + 1; for (int i = 1; i < cnt; ++i) { addedge(i + N, des, (tt[i] - tt[i - 1]) * M); for (int j = 1; j <= N; ++j) { if (s[j] <= tt[i - 1] && tt[i] <= e[j]) addedge(j, N + i, INF); } } if (sap(src, des, des + 1) == sum) printf("Yes\n"); else printf("No\n"); } return 0; }