Codeforces Round #316 (Div. 2) D. Tree Requests 树 离线在线 算法

D. Tree Requests
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Roman planted a tree consisting of n vertices. Each vertex contains a lowercase English letter. Vertex 1 is the root of the tree, each of the n - 1 remaining vertices has a parent in the tree. Vertex is connected with its parent by an edge. The parent of vertex i is vertex pi, the parent index is always less than the index of the vertex (i.e., pi < i).

The depth of the vertex is the number of nodes on the path from the root to v along the edges. In particular, the depth of the root is equal to 1.

We say that vertex u is in the subtree of vertex v, if we can get from u to v, moving from the vertex to the parent. In particular, vertex v is in its subtree.

Roma gives you m queries, the i-th of which consists of two numbers vihi. Let's consider the vertices in the subtree vi located at depthhi. Determine whether you can use the letters written at these vertices to make a string that is a palindrome. The letters that are written in the vertexes, can be rearranged in any order to make a palindrome, but all letters should be used.

Input

The first line contains two integers nm (1 ≤ n, m ≤ 500 000) — the number of nodes in the tree and queries, respectively.

The following line contains n - 1 integers p2, p3, ..., pn — the parents of vertices from the second to the n-th (1 ≤ pi < i).

The next line contains n lowercase English letters, the i-th of these letters is written on vertex i.

Next m lines describe the queries, the i-th line contains two numbers vihi (1 ≤ vi, hi ≤ n) — the vertex and the depth that appear in thei-th query.

Output

Print m lines. In the i-th line print "Yes" (without the quotes), if in the i-th query you can make a palindrome from the letters written on the vertices, otherwise print "No" (without the quotes).

Sample test(s)
input
6 5
1 1 1 3 3
zacccd
1 1
3 3
4 1
6 1
1 2
output
Yes
No
Yes
Yes
Yes
Note

String s is a palindrome if reads the same from left to right and from right to left. In particular, an empty string is a palindrome.

Clarification for the sample test.

In the first query there exists only a vertex 1 satisfying all the conditions, we can form a palindrome "z".

In the second query vertices 5 and 6 satisfy condititions, they contain letters "с" and "d" respectively. It is impossible to form a palindrome of them.

In the third query there exist no vertices at depth 1 and in subtree of 4. We may form an empty palindrome.

In the fourth query there exist no vertices in subtree of 6 at depth 1. We may form an empty palindrome.

In the fifth query there vertices 2, 3 and 4 satisfying all conditions above, they contain letters "a", "c" and "c". We may form a palindrome "cac".

题意,给出一个树,要求一些询问,某个结点的子树中的第q层能否形成回文串。

1.状态压缩,由于,只有26个字符,所以用一个int存每个字符的奇偶数(只需要知道奇偶性,下面也只需要用奇偶性),压缩内存。

2.如何判定回文,只要a-z的字符最多有一个字符出现奇数次,就可以形成回文串。也就是(x&(-x)),去掉最后的一个1后,还是非0说明存在2个1以上,也就不能构成回文

方法一:先来说下离线的做法,先把所有的询问读入,按dfs搜索的顺序,每个询问在进入前先异或上这层的值,出这个结点时,再异或上这层的值,先前该层的值异或两次抵消了,所以就是这个结点下的子树的该层的值了。复杂度为o(n);

#define N 500005
#define M 100005
#define maxn 205
#define MOD 1000000000000000007
int n,m,tree[N],t,v,h,ans[N],pre[N];
char str[N];
bool vis[N];
vector<int> p[N];
vector<pii> q[N];
int DFS(int f,int depth){
    FI(q[f].size()){
        ans[q[f][i].first] ^= pre[q[f][i].second];
    }
    FI(p[f].size()){
        DFS(p[f][i],depth + 1);
    }
    pre[depth] ^= (1<<(str[f - 1] - 'a'));
    FI(q[f].size()){
        ans[q[f][i].first] ^= pre[q[f][i].second];
    }
    return 0;
}
int main()
{
     while(S2(n,m)!=EOF)
    {
        FI(n + 1){
           p[i].clear();
           q[i].clear();
           pre[i] = 0;
           ans[i] = 0;
        }
        FI(n-1){
            S(t);
            p[t].push_back(i+2);
        }
        SS(str);
        FI(m){
           S2(v,h);
           q[v].push_back(mp(i,h));
        }
        DFS(1,1);
        FI(m){
            if(ans[i] & (ans[i] - 1))
                printf("No\n");
            else
                printf("Yes\n");
        }
    }
    return 0;
}

方法二:在线做法。先把树形结构转化成线形结构,也就是进入的时候标记一下,出来的时候标记一下,就可以转化成为一个线形增大的值。每个结点,只会影响到它所在层的值,所以,先预处理出每个结点在它的层中形成的状态存起来。然后,由于是要求结点v的子树,所以只要求出在s[v] e[v]之间的值,用二分的方法,找出起始结点的位置,和离开结点的位置用结束时的状态异或开始的状态,就可以求出来这个结点子树的状态了。复杂度由于要二分查找,为o(n * log(n);但离线的做法,更加有意义。

#define N 500005
#define M 100005
#define maxn 205
#define MOD 1000000000000000007
int n,m,tree[N],t,v,h,ans,s[N],e[N],index;
char str[N];
bool vis[N];
vector<int> p[N];
vector<pii> dep[N];
int DFS(int f,int depth){
    s[f] = index++;
    FI(p[f].size()){
        DFS(p[f][i],depth + 1);
    }
    dep[depth].push_back(mp(index,dep[depth].back().second^(1<<(str[f - 1] - 'a'))));
    e[f] = index++;
    return 0;
}
int main()
{
     while(S2(n,m)!=EOF)
    {
        FI(n + 1){
           p[i].clear();
           dep[i].clear();
           dep[i].push_back(mp(0,0));
        }
        FI(n-1){
            S(t);
            p[t].push_back(i+2);
        }
        SS(str);
        index = 1;
        DFS(1,1);
        FI(m){
           S2(v,h);
           int l = lower_bound(dep[h].begin(),dep[h].end(),mp(s[v],-1)) - dep[h].begin() - 1;
           int r = lower_bound(dep[h].begin(),dep[h].end(),mp(e[v],-1)) - dep[h].begin() - 1;
           ans = dep[h][r].second ^ dep[h][l].second;
           if(ans & (ans - 1))
                printf("No\n");
            else
                printf("Yes\n");
        }
    }
    return 0;
}


你可能感兴趣的:(Codeforces Round #316 (Div. 2) D. Tree Requests 树 离线在线 算法)