Given an arranged chess board with pieces, figure out the total number of different ways in which any piece can be killed in one move. Note: in this problem, the pieces can be killed despite of the color.
For example, if there are 3 pieces King is at B2, Pawn at A1 and Queen at H8 then the total number of pieces that an be killed is 3. H8-Q can kill B2-K, A1-P can kill B2-K, B2-K can kill A1-P
A position on the chess board is represented as A1, A2... A8,B1.. H8
Pieces are represented as
The first line of the input gives the number of test cases, T. T Test cases follow. Each test case consists of the number of pieces , N. N lines follow, each line mentions where a piece is present followed by - with the piece type
For each test case, output one line containing "Case #x: y", where x is the test case number (starting from 1) and y is the the total number of different ways in which any piece can be killed.
1 ≤ T ≤ 100.
1 ≤ N ≤ 10.
Pieces can include K, P
1 ≤ N ≤ 64.
类型:其他 难度:2
题意:给出一个国际象棋棋盘(给出的图错了,应将棋子固定,坐标顺时针旋转90度),以及给出若干棋子的类型为位置(不分黑白)。求有多少种一步吃子的方法,即遍历每个棋子,将每个棋子一步能吃子的情况累加。
棋子种类与吃子规则:
分析:遍历每个棋子,看每个棋子走一步的所有情况中有多少能吃子,累加即可。关键在于走法比较繁琐。如何能快速的抽象化每种棋子的吃子模式,我的方法是,用mp[i][j]记录棋盘上(i,j)的棋子种类。用dir[][2]记录某个棋子的下一步的所有情况的坐标变化。那么可得K的dir数组为,int dirK[8][2] = {{-1,-1},{-1,0},{-1,1},{1,-1},{1,0},{1,1},{0,-1},{0,1}};,其他棋子以此类推。
对于每个棋子,判断棋子种类,对于只能移动一格的棋子,用一层循环遍历其下一步的位置,若该位置有棋子,答案计数ans++;
对于能移动多格的棋子,加一个内层循环记录在某个方向上的步数,注意若在这个方向遇到棋子,ans++,并跳出内层循环,以满足所有棋子均不能越过棋子吃子的条件。
代码如下:
#include <iostream> #include <vector> #include <algorithm> #include <cstdint> #include <cstdio> #include <cstring> #include <string> #include <set> #include <map> using namespace std; int n; char mp[10][10]; int dirK[8][2] = {{-1,-1},{-1,0},{-1,1},{1,-1},{1,0},{1,1},{0,-1},{0,1}}; int dirR[4][2] = {{-1,0},{1,0},{0,-1},{0,1}}; int dirB[4][2] = {{-1,-1},{-1,1},{1,-1},{1,1}}; int dirN[8][2] = {{-1,-2},{-1,2},{1,-2},{1,2},{-2,-1},{-2,1},{2,-1},{2,1}}; int dirP[2][2] = {{1,-1},{1,1}}; int fun(int i,int j) { int ans = 0; if(mp[i][j]=='K') { for(int k=0; k<8; ++k) { int ni = i+dirK[k][0]; int nj = j+dirK[k][1]; if(ni>=0 && ni<8 && nj>=0 && nj<8 && mp[ni][nj]!=0) ++ans; } } else if(mp[i][j]=='Q') { for(int k=0; k<8; ++k) { for(int l=1; l<8; ++l) { int ni = i+dirK[k][0]*l; int nj = j+dirK[k][1]*l; if(ni>=0 && ni<8 && nj>=0 && nj<8 && mp[ni][nj]!=0) { ++ans; break; } } } } else if(mp[i][j]=='R') { for(int k=0; k<4; ++k) { for(int l=1; l<8; ++l) { int ni = i+dirR[k][0]*l; int nj = j+dirR[k][1]*l; if(ni>=0 && ni<8 && nj>=0 && nj<8 && mp[ni][nj]!=0) { ++ans; break; } } } } else if(mp[i][j]=='B') { for(int k=0; k<4; ++k) { for(int l=1; l<8; ++l) { int ni = i+dirB[k][0]*l; int nj = j+dirB[k][1]*l; if(ni>=0 && ni<8 && nj>=0 && nj<8 && mp[ni][nj]!=0) { ++ans; break; } } } } else if(mp[i][j]=='N') { for(int k=0; k<8; ++k) { int ni = i+dirN[k][0]; int nj = j+dirN[k][1]; if(ni>=0 && ni<8 && nj>=0 && nj<8 && mp[ni][nj]!=0) ++ans; } } else { for(int k=0; k<2; ++k) { int ni = i+dirP[k][0]; int nj = j+dirP[k][1]; if(ni>=0 && ni<8 && nj>=0 && nj<8 && mp[ni][nj]!=0) ++ans; } } return ans; } int main() { freopen("D-small-practice.in", "r", stdin); freopen("D-small-practice.out", "w", stdout); int t; scanf("%d",&t); for(int cnt=1; cnt<=t; ++cnt) { scanf("%d",&n); char tmp[20]; memset(mp,0,sizeof(mp)); for(int i=0; i<n; ++i) { scanf("%s",tmp); mp[tmp[0]-'A'][tmp[1]-'1'] = tmp[3]; } int ans = 0; for(int i=0; i<8; ++i) for(int j=0; j<8; ++j) { if(mp[i][j]!=0) { ans += fun(i,j); } } printf("Case #%d: %d\n",cnt,ans); } }