poj 1821 Fence(dp+单调队列优化)

题目链接

Fence
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 3604   Accepted: 1094

Description

A team of k (1 <= K <= 100) workers should paint a fence which contains N (1 <= N <= 16 000) planks numbered from 1 to N from left to right. Each worker i (1 <= i <= K) should sit in front of the plank Si and he may paint only a compact interval (this means that the planks from the interval should be consecutive). This interval should contain the Si plank. Also a worker should not paint more than Li planks and for each painted plank he should receive Pi $ (1 <= Pi <= 10 000). A plank should be painted by no more than one worker. All the numbers Si should be distinct. 

Being the team's leader you want to determine for each worker the interval that he should paint, knowing that the total income should be maximal. The total income represents the sum of the workers personal income. 

Write a program that determines the total maximal income obtained by the K workers. 

Input

The input contains: 
Input 

N K 
L1 P1 S1 
L2 P2 S2 
... 
LK PK SK 

Semnification 

N -the number of the planks; K ? the number of the workers 
Li -the maximal number of planks that can be painted by worker i 
Pi -the sum received by worker i for a painted plank 
Si -the plank in front of which sits the worker i 

Output

The output contains a single integer, the total maximal income.

Sample Input

8 4
3 2 2
3 2 3
3 3 5
1 1 7 

Sample Output

17

Hint

Explanation of the sample: 

the worker 1 paints the interval [1, 2]; 

the worker 2 paints the interval [3, 4]; 

the worker 3 paints the interval [5, 7]; 

the worker 4 does not paint any plank 

题意:长度为n的墙,k个粉刷匠。第 i 个粉刷匠在 si ,他最多可以刷包含 si 的长度为 li 的区间,他刷单位长度获得钱 pi 。求k个粉刷匠最多能赚多少钱?


题解:首先将k个人按所在位置排序 。dp[ i ][ j ] 表示前i个人,处理了前j 的墙的最大收益(处理表示:可以刷,可以不刷)。转移就是:

dp[ i ][ j ] =max( dp[ i ][ j-1 ] , dp[ i -1][ j ] );

dp[ i ][ j  ]=max( dp[ i ][ j ] , dp[ i-1 ][ k ]+w(k+1,j,i ) ), j-l[ i ]<=k<s[ i ] 。 w(k+1,j,i)表示第i个人刷 k+1到 j 的收益。

w(k+1,j,i)=p[ i ]*j-p[ i ]*k;

所以第二个转移可以写成:

dp[ i ][ j ]=max(dp[ i ][ j ] ,max(dp[ i-1][ k ]-p[ i ]*k )+p[ i ]*j );

因为:j-l[ i ]<=k<s[ i ]

随着 j 的增大,k的下界在不断增大,上界不变。所以对于max(dp[ i -1][ k ]-p[ i ]*k),我们可以用单调队列维护。这样转移可以降到O(1),复杂度O(n*k)。


代码如下:

#include<stdio.h>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<vector>
#include<iostream>
#include<string.h>
#include<string>
#include<math.h>
#include<stdlib.h>
#define inff 0x3fffffff
#define eps 1e-8
#define nn 21000
#define mod 1000000007
typedef long long LL;
const LL inf64=LL(inff)*inff;
using namespace std;
int n,k;
int l[nn],p[nn],s[nn];
int dp[110][nn];
int que[nn];
int l1,r1;
void add(int id,int i)
{
    while(r1>l1)
    {
        if(dp[i-1][que[r1-1]]-p[i]*que[r1-1]<=dp[i-1][id]-p[i]*id)
        {
            r1--;
        }
        else
        {
            break;
        }
    }
    que[r1++]=id;
}
void dele(int id)
{
    while(l1<r1)
    {
        if(que[l1]<id)
        {
            l1++;
        }
        else
            break;
    }
}
int main()
{
    int i,j;
    while(scanf("%d%d",&n,&k)!=EOF)
    {
        for(i=1;i<=k;i++)
        {
            scanf("%d%d%d",&l[i],&p[i],&s[i]);
        }
        for(i=1;i<=k;i++)
        {
            for(j=i+1;j<=k;j++)
            {
                if(s[j]<s[i])
                {
                    swap(l[i],l[j]);
                    swap(s[i],s[j]);
                    swap(p[i],p[j]);
                }
            }
        }
        for(i=0;i<=n;i++)
            dp[0][i]=0;
        int ix;
        for(i=1;i<=k;i++)
        {
            l1=r1=0;
            add(0,i);
            for(j=1;j<=n;j++)
            {
                dp[i][j]=max(dp[i][j-1],dp[i-1][j]);
                if(j>=s[i])
                {
                    ix=max(0,j-l[i]);
                    if(ix<s[i])
                    {
                        dele(ix);
                        dp[i][j]=max(dp[i][j],dp[i-1][que[l1]]-p[i]*que[l1]+p[i]*j);
                    }
                }
                if(j<s[i])
                    add(j,i);
            }
        }
        printf("%d\n",dp[k][n]);
    }
    return 0;
}


你可能感兴趣的:(dp,ACM,单调队列)