红黑树Red-Black-Tree

// RedBlack.h
#ifndef REDBLACK_INCLUDE
#define  REDBLACK_INCLUDE

template
< typename T >
class  RedBlackTree
{
    
struct Node{
            T       key;
            
bool    color;
            Node
*   parent;
            Node
*   left;
            Node
*   right;
            Node(T data_, 
bool  color_, Node* p, Node* l, Node* r)
                :key(data_),color(color_),parent(p),left(l),right(r)
{}
    }
;     
           Node
* NIL;
           Node
* root;
           
bool  RED   ;
           
bool  BLACK ;
           
public:

    RedBlackTree(T data
=0bool str=false, Node* p=NULL, Node* q=NULL, Node* e=NULL):RED(true),BLACK(false)
    
{   
           
            NIL 
=  new Node(0, BLACK, NIL, NIL, NIL);//哨兵结点
            root = NIL;
        
    }

    
~RedBlackTree()
    
{
       DeleteTree(root);
       delete NIL;
    }

    
     
void  LeftRotate(Node* x);
     
void  RightRotate(Node* y);
     
void  RBInsert(T  data);
     
void  RBInsertFixup(Node* z);
     
void  RBDelete(T data);
     
void  RBDeleteFixUp(Node* x);
     Node
* TreeSearchNumber(Node* x, T k);
     Node
* TreeSuccessor(Node* x);
     
void  DeleteTree(Node* x);
     
void  PrintTree(Node* x);
     Node
* GetNode(void);
     Node
* TreeMinIMUM(Node* x );

}
;

#endif
// RedBlackTree_.h
#ifndef REDBLACKTREE_H_INCLUDE
#define  REDBLACKTREE_H_INCLUDE

#include 
" RedBlack.h "
#include 
< assert.h >
#include 
< string >
#include 
< iostream >

template
< typename T >
RedBlackTree
< T > ::Node *  RedBlackTree < T > ::TreeMinIMUM(Node *  x )
{
    
while(x->left != NIL)
      x 
= x->left;
      
return x;
}

template
< typename T >
RedBlackTree
< T > ::Node *   RedBlackTree < T > ::GetNode( void )
{
    
return root;
}


template
< typename T >
void  RedBlackTree < T > ::PrintTree(Node *  x)
{   
    
if(NIL != x){
        
if(NIL != x->left)
        
{
         PrintTree(x
->left);
        }

        
if(NIL != x->right)
        
{
         PrintTree(x
->right);
        }

        std::cout
<<x->key<<std::endl;
    }

}


template
< typename T >
void  RedBlackTree < T > ::DeleteTree(Node *  x)
{
    
if(x != NIL)
    
{   
        
if(NIL != x->left )
        
{
         DeleteTree(x
->left);
        }

        
if(NIL != x->right  )
        
{
         DeleteTree(x
->right);
        }

         delete x;
         x 
= NULL;
    }

}


template
< typename T >
RedBlackTree
< T > ::Node *  RedBlackTree < T > ::TreeSearchNumber(Node *  x, T k)
{
        
if( x == NIL || k == x->key )
            
return x;
        
if( k < x->key )
            
return TreeSearchNumber(x->left, k);
        
else
            
return TreeSearchNumber(x->right, k);
 }


template
< typename T >
RedBlackTree
< T > ::Node *  RedBlackTree < T > ::TreeSuccessor(Node *  x) // 存在两种情况:
{
      
if (x->right != NIL)//如果结点x的右子树非空,则x的后继即右子树中的最左的结点。
            return TreeMinIMUM(x->right) ;
      Node
* y = x->parent;//如果结点x的右子树为空,且x有一个后继y,则y是x的最低祖先结点,
      while( (y != NIL) && (x == x->right))//且y的左儿子也是x的祖先票篇 p154,p155《算法导论》
      {
          x 
= y;
          y 
= y->parent;
      }

       
return y;
 }

template
< typename T >
void  RedBlackTree < T > ::LeftRotate(Node *  x)
{  
      Node
* y  = x->right; //y是x的右结点
      if(NIL == y)
          
return;
      x
->right = y->left;     //让x的右指针指向y的左结点。
      if(NIL != y->left)      //y的左结点不是哨兵
          y->left->parent = x;//让y的左结点的parent指向x
      y->parent = x->parent;  //让y的父子针指向x的父结点
      if(x->parent == NIL) //x为根结点
      {
           root 
= y;//让y成为根结点
      }

      
else if(x == x->parent->left)//如果x为左子女
      {
        x
->parent->left = y; //y便代替x成为左子女
      }

      
else
          x
->parent->right =y; //否则代替x成为右子女

      y
->left = x;            //x成为y的左子女
      x->parent = y;          //y成为x的父结点
}

// ______________________________________________________________ //
//                                                                //
//      |                                 |                       //
//        X      left_Rotate(T,x)           Y                       //
//       /      ----------------->        /                       //
//    α  Y    <----------------        X  γ                     //
//       /     Right_Rotate(T,y)      /                         //
//        β γ                         α β                       //
// ______________________________________________________________ //

template
< typename T >
void  RedBlackTree < T > ::RightRotate(Node *  y )
{
      Node
* x = y->left;
      
if(NIL == x)
          
return;
      y
->left = x->right;
      
if(x->right != NIL)
          x
->right->parent = y;
      x
->parent = y->parent;
      
if(y->parent == NIL)
      
{
          root 
= x;
      }

      
else if (y == y->parent->right)
      
{
          y
->parent->right = x;
      }

      
else
      
{
          y
->parent->left = x;
      }

      
      x
->right  = y;
      y
->parent = x;
}


template
< typename T >
void  RedBlackTree < T > ::RBInsert(T data)
{     
      Node
* x = root;
      Node
* z = new Node(data,RED,NULL,NULL,NULL);//将要插入的结点
      assert(z != NULL);
      Node
* y = NIL;
     
      
while( x != NIL)
      
{
          y 
= x;
          
if(z->key < x->key)
          
{
              
if(x->left != NIL)
              
{
               x 
= x->left;
              }

              
else
              
{
                  
break;
              }

          }

          
else 
          
{    
              
if(x->right != NIL)
              
{
                 x 
= x->right;
              }

              
else
              
{
                  
break;
              }

          }

      }

       z
->parent = y;
       
if(y == NIL)
           root 
= z;
       
else if(z->key < y->key)
           y
->left = z;
           
else
               y
->right = z;
        z
->left = NIL;
        z
->right = NIL;
        z
->color = RED;
        RBInsertFixup(z);
}


// 在调用RBInsertFixup(),那些红黑树的性质可能会被破坏呢?性质1和性质3当然继续成立,
// 因为新插入的结点的子女都是哨兵NIL。性质5即从一个制定结点开始的每条路径上黑结点的个数
// 都是相等的,也会成立,因为结点z本身就是具有哨兵子女的红结点。因此,可能被破坏的就是根节点2,
// 以及一个红结点不能有红子女的性质4。这两个可能的破坏是因为z被着为红色。如果z是根结点则破坏了性质2,
// 如果z的父结点是红色就破坏了性质4.

template
< typename T >
void  RedBlackTree < T > ::RBInsertFixup(Node *  z)
{    
      Node
* y = NIL;
      
while( root != z && z->parent->color == RED)
      
{
          
if( z->parent == z->parent->parent->left)
          
{
              y 
=  z->parent->parent->right;
            
if(y != NIL && y->color == RED  )
            
{
                z
->parent->color = BLACK;
                y
->color = BLACK;
                z
->parent->parent->color = RED;
                z 
= z->parent->parent;
            }

             
else 
             
{
                
if( z == z->parent->right)
                
{
                    z 
= z->parent;
                    LeftRotate(z);
                }

            
             
                 z
->parent->color = BLACK;
                 z
->parent->parent->color = RED;//还没旋转
                 RightRotate(z->parent->parent);
             }

             
          }

              
        
else
        
{     
             y 
=  z->parent->parent->left;
          
if(y != NIL && y->color == RED  )
          
{
              z
->parent->color = BLACK;
              y
->color = BLACK;
              z
->parent->parent->color = RED;
              z 
= z->parent->parent;
          }

          
else 
          
{  
              
if (z == z->parent->left)
              
{
                  z 
= z->parent;
                  RightRotate(z);
              }

         
              z
->parent->color = BLACK;
              z
->parent->parent->color = RED;
              LeftRotate(z
->parent->parent);
          }

          
        }


      
      }
//while
        
      root
->color = BLACK;

}


template
< typename T >
void  RedBlackTree < T > ::RBDelete(T data)
{     
      Node
* x = NIL;
      Node
* y = NIL;
      assert(TreeSearchNumber(root, data)
->key == data);//查找看有没有值和同结点指示的一样
      Node* z = TreeSearchNumber(root, data);//找到此结点
      if((z->left == NIL) ||(z->right == NIL))
      
{
        y 
= z;
      }

       
else
       
{
         y 
= TreeSuccessor(z);
       }

      
if(y->left != NIL)
      
{
         x 
= y->left;
      }

       
else
       
{
          x 
= y->right;
       }


      x
->parent = y->parent;
      
if(y->parent == NIL)
          root 
= x;
      
else if(y == y->parent->left)
          y
->parent->left = x;
      
else
          y
->parent->right = x;

      
if(y != z)
          z
->key = y->key;
    
      
if(y->color == BLACK && NIL != x)
          RBDeleteFixUp(x);

      delete y;
}


template
< typename T >
void  RedBlackTree < T > ::RBDeleteFixUp(Node *  x)
{   
    Node
* y = NIL;
    Node
* w = NIL;
    
while(x != root && BLACK == x->color)
    
{
       
if(x == x->parent->left)
       
{
            w 
= x->parent->right;
            
if(NIL == w)
               
continue;
            
if(w->color == RED)
            
{
               w
->color = BLACK;
               x
->parent->color = RED;
               LeftRotate(x
->parent);
               w 
= x->parent->right;
            }

             
if( NIL != w->left &&   BLACK == w->left->color && 
                NIL 
!= w->right && BLACK == w->right->color)
             
{
                w
->color = RED;
                x 
= x->parent;
             }

            
else 
            
{
                
if(NIL != w->right && BLACK == w->right->color)
                
{
                   w
->left->color = BLACK;
                   w
->color = RED;
                   RightRotate(w);
                   w 
= x->parent->right;
                }

            
            
                w
->color = x->parent->color;
                x
->parent->color = BLACK;
                w
->right->color = BLACK;
                LeftRotate(x
->parent);
                x 
= root;
            }

            
       }


        
else 
        

               w 
= x->parent->left;
               
if(NIL == w)
                  
continue;
               
if(RED == w->color)
               
{   
                   w
->color = BLACK;
                   x
->parent->color = RED;
                   RightRotate(x
->parent);
                   y 
= x->parent->left;
               }

               
if(NIL != w->left && BLACK == w->left->color &&
                   NIL 
!= w->right && BLACK == w->right->color)
               
{  
                   w
->color = RED;
                   x 
= x->parent;
               }

           
else 
           

             
if(NIL != w->left && w->left->color == BLACK)
             
{
               w
->right->color = BLACK;
               w
->color = RED;
               LeftRotate(w);
               w 
= x->parent->left;
             }

                   
               w
->color = w->parent->color;
               w
->parent->color = BLACK;
               w
->left->color = BLACK;
               RightRotate(w
->parent);
               x 
= root;
           }

        
        }

    }

    x
->color = BLACK;
}


#endif
//  stdafx.h : include file for standard system include files,
//   or project specific include files that are used frequently, but
//       are changed infrequently
//

#if  !defined(AFX_STDAFX_H__5AFECD4B_C1BA_40D8_9CDA_150A0A3D20C6__INCLUDED_)
#define  AFX_STDAFX_H__5AFECD4B_C1BA_40D8_9CDA_150A0A3D20C6__INCLUDED_

#if  _MSC_VER > 1000
#pragma  once
#endif   //  _MSC_VER > 1000


//  TODO: reference additional headers your program requires here

// {{AFX_INSERT_LOCATION}}
//  Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif   //  !defined(AFX_STDAFX_H__5AFECD4B_C1BA_40D8_9CDA_150A0A3D20C6__INCLUDED_)
//  RedBlackTree.cpp : Defines the entry point for the console application.
// 主要参考了《算法导论》和博客http: // www.cppblog.com/converse/archive/2006/10/07/13413.html
// 红黑树的性质:
// 1.每个结点或是红的或是黑的
// 2.根结点是黑的
// 3.每个叶结点(NULL)是黑的
// 4.如果一个结点是红的,则它的两个儿子都是黑的
// 5.对每个结点,从该结点到其他子孙结点的所有路径上包含相同数目的黑结点
// 注意哨兵NIL和NULL不能混用,以及关于调整树时if...else的用法。

#include 
" stdafx.h "
#include 
< iostream >
#include 
< string >
#include 
" RedBlackTree_.h "


int  main( int  argc,  char *  argv[])
{
    RedBlackTree
<int>rt;
    rt.RBInsert(
5);
    rt.RBInsert(
34);
    rt.RBInsert(
456);
    rt.RBInsert(
75);
    rt.RBInsert(
42);
    rt.RBDelete(
34);
    rt.PrintTree(rt.GetNode());
    
return 0;
}
 

你可能感兴趣的:(算法,String,null,insert,include,iostream)