LeetCode(18)4Sum

题目

Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.

Note:
Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0.

A solution set is:
(-1,  0, 0, 1)
(-2, -1, 1, 2)
(-2,  0, 0, 2)

分析

类似于15题求解的 3Sum 问题,这次求解 4Sum 问题,本质是相同的,不可以采用穷举法;
其实求解 4Sum 问题可以分解为求 3Sum 问题,对数列依次遍历 i ,我们只需得到在第 i 个数后面,找出所有和为 targetnums[i] 的三元组,同理求 3Sum 又可以退化为 2Sum ,进而退化为 1Sum
因此,采用递归的思想解决 KSum 问题 ,但是递归的性能总是不满意的 , 意料之中的TLE。

转换思路,我们可以使用2-sum的变形,两层遍历首先确定前两个元素,在确定后两个元素时采用2-sum的方式解决;

学习:关于2-sum 3-sum 和 4-sum 乃至于k-sum问题一个很好的总结。

AC代码

class Solution {
public:
    /*4-sum算法,递归实现,TLE*/
    vector<vector<int>> fourSum1(vector<int>& nums, int target) {
        if (nums.empty())
            return vector<vector<int>>();

        sort(nums.begin(), nums.end());

        return k_Sum(nums, 0, 4, target);
    }
    /*k-sum算法*/
    vector<vector<int>> k_Sum(vector<int> &nums, int begPos, int count, int target)
    {
        if (nums.empty())
            return vector<vector<int>>();
        /*所输入序列为已排序*/
        int len = nums.size();
        unordered_set<int> visited;
        vector<vector<int>> ret;
        vector<int> tmp;
        /*2-sum 处理*/
        if (2 == count)
        {
            int i = begPos, j = len - 1;
            while (i < j)
            {
                int sum = nums[i] + nums[j];
                if (sum == target && visited.find(nums[i]) == visited.end())
                {
                    tmp.clear();
                    tmp.push_back(nums[i]);
                    tmp.push_back(nums[j]);
                    ret.push_back(tmp);

                    /*加入已访问set*/
                    visited.insert(nums[i]);
                    visited.insert(nums[j]);

                    ++i;
                    --j;
                }//if
                else if (sum < target)
                    ++i;
                else
                    --j;
            }//while
        }//if
        else{
            for (int i = begPos; i < len; ++i)
            {
                if (visited.find(nums[i]) == visited.end())
                {
                    visited.insert(nums[i]);
                    /*得到k-1 sum的序列*/
                    vector<vector<int>> subRet = k_Sum(nums, i+1, count - 1, target-nums[i]);
                    if (!subRet.empty())
                    {
                        int sz = subRet.size();
                        for (int j = 0; j < sz; ++j)
                        {
                            subRet[j].insert(subRet[j].begin(), nums[i]);
                        }//for
                        ret.insert(ret.end(), subRet.begin(), subRet.end());
                    }//if
                }//if
            }//for
        }//else
        /*返回结果集*/
        return ret;
    }

    /*4-sum算法,方法二,2-sum的变形*/
    vector<vector<int>> fourSum(vector<int>& nums, int target) {
        if (nums.empty() || nums.size() < 4)
            return vector<vector<int>>();

        sort(nums.begin(), nums.end());
        int len = nums.size();
        set<vector<int>> tmpRet;
        vector<vector<int>> res;

        for (int i = 0; i < len; ++i)
        {
            for (int j = i + 1; j < len; ++j)
            {
                int beg = j + 1, end = len - 1;
                while (beg < end)
                {
                    int sum = nums[i] + nums[j] + nums[beg] + nums[end];
                    if (sum == target)
                    {
                        vector<int> tmp = { nums[i], nums[j], nums[beg], nums[end] };
                        tmpRet.insert(tmp);

                        ++beg;
                        --end;
                    }
                    else if (sum < target)
                    {
                        ++beg;
                    }
                    else
                        --end;
                }//while
            }//for 
        }//for
        auto iter = tmpRet.begin();
        while (iter != tmpRet.end())
        {
            res.push_back(*iter);
            ++iter;
        }//while
        return res;
    }

};

GitHub测试程序源码

你可能感兴趣的:(LeetCode(18)4Sum)