KMeans的C++及Python实现

1. C++实现

#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <ctime>
using namespace std;

const int k = 3;
const int dims = 4;
const int dataNum = 150;
typedef vector<double> Tuple;

void doKmeans(vector<Tuple>& tuples);
void assignTuples(vector<Tuple> clusters[],vector<Tuple> tuples,Tuple means[]);
double getDist(const Tuple& t1, const Tuple& t2);
double getVal(vector<Tuple> clusters[], Tuple means[]);
Tuple updateMeans(const vector<Tuple>& cluster_i);
void print(vector<Tuple> clustes[]);

int main()
{
	char filename[] = "bezdekIris.data";
	fstream file(filename); //打开存放样本数据的文件
	if (!file)
	{
		cout << "Cannot open the file" << endl;
		return 0;
	}
	vector<Tuple> tuples;
	int pos = 0;
	while (!file.eof())
	{
		string str;
		getline(file,str);
		stringstream ss(str);
		Tuple tuple(dims+1,0);
		tuple[0] = pos + 1;
		for (int i = 1; i <= dims; i++)
			ss >> tuple[i];
		tuples.push_back(tuple);
		pos++;
	}
	//
	doKmeans(tuples);
	system("pause");
	return 0;
}


void doKmeans(vector<Tuple>& tuples)
{
	cout << "初始化......" << endl;
	//初始化k个聚类中心
	vector<Tuple> clusters[k];
	Tuple means[k];
	srand((unsigned)time(NULL));
	for (int i = 0; i < k; i++)
	{
		int temp = rand()%tuples.size();
		means[i] = tuples[temp]; 
	}
	//将样本分配到与其最近的聚类中心
	assignTuples(clusters,tuples,means);
	//计算初始整体误差平方和
	double newVal = getVal(clusters,means);
	double oldVal = -1;
	int t = 0;
	while ((abs(newVal - oldVal)) > 1)
	{
		cout << "开始第" << t + 1 << "次迭代......" << endl;
		cout << "更新聚类中心..." << endl;
		for (int i = 0; i < k; i++)
			means[i] = updateMeans(clusters[i]);
		cout << "计算新的整体误差平方和..." << endl;
		oldVal = newVal;
		newVal = getVal(clusters,means);
	}

	print(clusters);

}
void assignTuples(vector<Tuple> clusters[], vector<Tuple> tuples,Tuple means[])
{
	for (int i = 0; i < tuples.size(); i++)
	{
		int label = 0;
		double dist = getDist(tuples[i],means[0]);
		for (int j = 1; j < k; j++)
		{
			double temp = getDist(tuples[i],means[j]);
			if (temp < dist)
			{
				dist = temp;
				label = j;
			}
		}
		clusters[label].push_back(tuples[i]);
	}
}

double getDist(const Tuple& t1, const Tuple& t2)
{
	double sum = 0;
	for (int i = 1; i <= dims; i++)
		sum += (t1[i] - t2[i]) * ((t1[i] - t2[i]));
	return sum;
}

double getVal(vector<Tuple> clusters[], Tuple means[])
{
	double val = 0;
	for (int i = 0; i < k; i++)
	{
		vector<Tuple> t = clusters[i];
		for (int j = 0; j < t.size(); j++)
			val += getDist(t[j],means[i]);
	}
	return val;
}

Tuple updateMeans(const vector<Tuple>& cluster_i)
{
	Tuple t(dims+1,0);
	for (int i = 0; i < cluster_i.size(); i++)
		for (int j = 1; j <= dims; j++)
			t[j] += cluster_i[i][j];
	for (int i = 1; i <= dims; i++)
		t[i] /= cluster_i.size();
	return t;
}

void print(vector<Tuple> clustes[])
{
	for (int i = 0; i < k; i++)
	{
		cout << "第" << i+1 << "簇:" << endl;
		vector<Tuple> t = clustes[i];
		for (int j = 0; j < t.size(); j++)
		{
			for (int d = 0; d <= dims; d++)
				cout << t[j][d] << " ";
			cout << endl;
		}
	}
}


Python实现:

(1)kmeans.py

from numpy import *
import pdb
import matplotlib.pyplot as plt


def createCenter(dataSet,k):
    n = shape(dataSet)[0]
    d = shape(dataSet)[1]
    centroids = zeros((k,d))
    for i in range(k):
        c = int(random.uniform(0,n-1))  #浮点数
        centroids[i,:] = dataSet[c,:]
    return centroids
    
def getDist(vecA,vecB):
    return sqrt(sum(power(vecA - vecB,2)))

def kmeans(dataSet, k):
    n = shape(dataSet)[0]
    clusterAssment = mat(zeros((n,2)))
    centroids = createCenter(dataSet,k)
    
    clusterChnaged = True
    while clusterChnaged:
        clusterChnaged = False
        
        for i in range(n):
            minDist = inf
            minIndex = -1
            for j in range(k):
                distJI = getDist(dataSet[i,:],centroids[j,:])
                if distJI < minDist:
                    minDist = distJI
                    minIndex = j
            if clusterAssment[i,0] != minIndex:  #收敛条件:分配结果不再变化
                clusterChnaged = True
                clusterAssment[i,:] = minIndex,minDist**2
        
        #更新质心的位置
        for  i in range(k):
            ptsdataSet = dataSet[nonzero(clusterAssment[:,0].A == i)[0]]
            centroids[i,:] = mean(ptsdataSet,axis = 0) #沿矩阵的列方向进行矩阵计算    
    return centroids,clusterAssment      

def print_result(dataSet,k,centroids,clusterAssment):
    n,d = dataSet.shape
    if d !=2:
        print "Cannot draw!"
        return 1
    mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
    if k > len(mark):
        print "Sorry your k is too large"
        return 1
        
    for i in range(n):
        markIndex = int(clusterAssment[i,0])
        plt.plot(dataSet[i, 0],dataSet[i, 1],mark[markIndex])
    mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']  
    # draw the centroids  
    for i in range(k):  
        plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)  
    plt.show()  
    

(2)主函数实现:

from numpy import *
import matplotlib.pyplot as plt
import kmeans
dataSet = []

file = open('E:\\ZForWorks\\MLPython\\kmeansP\\testSet.txt')

for line in file.readlines():
    strline = line.strip().split('\t')
    sline = map(float,strline)
    dataSet.append(sline)
    
dataSet = mat(dataSet)
k = 4

kcentroids, clusterAssment = kmeans.kmeans(dataSet,k)

kmeans.print_result(dataSet,k,kcentroids,clusterAssment)


结果:


print_result只针对二维的样本数据


测试数据:

1.658985 4.285136
-3.453687 3.424321
4.838138 -1.151539
-5.379713 -3.362104
0.972564 2.924086
-3.567919 1.531611
0.450614 -3.302219
-3.487105 -1.724432
2.668759 1.594842
-3.156485 3.191137
3.165506 -3.999838
-2.786837 -3.099354
4.208187 2.984927
-2.123337 2.943366
0.704199 -0.479481
-0.392370 -3.963704
2.831667 1.574018
-0.790153 3.343144
2.943496 -3.357075
-3.195883 -2.283926
2.336445 2.875106
-1.786345 2.554248
2.190101 -1.906020
-3.403367 -2.778288
1.778124 3.880832
-1.688346 2.230267
2.592976 -2.054368
-4.007257 -3.207066
2.257734 3.387564
-2.679011 0.785119
0.939512 -4.023563
-3.674424 -2.261084
2.046259 2.735279
-3.189470 1.780269
4.372646 -0.822248
-2.579316 -3.497576
1.889034 5.190400
-0.798747 2.185588
2.836520 -2.658556
-3.837877 -3.253815
2.096701 3.886007
-2.709034 2.923887
3.367037 -3.184789
-2.121479 -4.232586
2.329546 3.179764
-3.284816 3.273099
3.091414 -3.815232
-3.762093 -2.432191
3.542056 2.778832
-1.736822 4.241041
2.127073 -2.983680
-4.323818 -3.938116
3.792121 5.135768
-4.786473 3.358547
2.624081 -3.260715
-4.009299 -2.978115
2.493525 1.963710
-2.513661 2.642162
1.864375 -3.176309
-3.171184 -3.572452
2.894220 2.489128
-2.562539 2.884438
3.491078 -3.947487
-2.565729 -2.012114
3.332948 3.983102
-1.616805 3.573188
2.280615 -2.559444
-2.651229 -3.103198
2.321395 3.154987
-1.685703 2.939697
3.031012 -3.620252
-4.599622 -2.185829
4.196223 1.126677
-2.133863 3.093686
4.668892 -2.562705
-2.793241 -2.149706
2.884105 3.043438
-2.967647 2.848696
4.479332 -1.764772
-4.905566 -2.911070



你可能感兴趣的:(KMeans的C++及Python实现)