U-boot启动的代码分析:
boot.lds 规定了所有编译后的.o 文件的链接方式,所有的.c 文件编译后都会生成一个.o 文件,.o 文件然后再按lds 规定的顺序将各自相同的数据段整合到一起生成一个ELF 文件。将ELF的头拿掉就生成一个.系统可执行的.bin 文件
当系统上电的时候,CPU中的固件(在CPU出厂前就已经烧录到CPU中,用于支持特定型号的Nand Flash)会将我们已经烧录到Nand Flash中的uboot.bin的前4K代码拷贝到CPU片内的SRAM中执行。
这前4K代码会执行如下任务
1>进入SVC模式
2>关闭看门狗
3>屏蔽所以的中断
4>设置CPU的速度和频率
5>关闭CPU内部的MMU和CACHE
6>初始化SDRAM
7>把Nand Flash中的uboot后4K的代码拷贝到SDRAM中
8>清.bss段
9>跳入SDRAM中的真正的第一个C函数start_armboot()
首先我们要了解的框架来自于uboot.lds,boot.lds是告诉编译器这段该以怎样的顺序链接
SECTIONS
{
. = 0x33F80000; //左边的.表示设置当前属性
__start = . ; //右边的.表示当前链接的地址
.text : //text指代码段
{
start.o (.text) //这里把start.o放在第一位就表示把start.s编译时放在最开始,这就是为什么把uboot烧到起始位置上它肯定运行的是start.s
clock.o (.text)
sdram.o (.text)
nand.o (.text)
* (.text)
}
. = ALIGN(4); //前面的“.”代表当前值,是计算一个当前的值,是计算上面占用的整个空间,再加一个单元就表示它现在的位置,按四个字节对齐
.rodata : //只读数据段
{
* (.rodata)
}
. = ALIGN(4);
.data : //数据段,全局变量
{
* (.data)
}
. = ALIGN(4);
__bss_start = .; //bss表示归零段
.bss :
{
* (.bss)
}
. = ALIGN(4);
__bss_end = .;
__end = .;
}
2、初始化的各文件
2.1> start.S
globl _start
_start:
/* 1. 硬件相关的设置 */
/*1.1 设置CPU的工作模式为SVC,cpsr[4:0]=10011;cpsr[7:5]=110,CPSR[7:0]=0x11010011*/
mrs r0 , cpsr //msr:将状态寄存器CPSR&SPSR读出到通用寄存器
bic r0 , r0 , #0x1f //bic:位清零,r0&=~(0x1f),r0[4:0]=0x0
orr r0 , r0 , #0xd3 //orr:逻辑或,r0|=(0xd3),r0[7:0]=0x11010011
msr cpsr , r0 //msr:将通用寄存器读出到状态寄存器CPSR&SPSR
/*1.2 关闭看门狗,否则在U-boot启动过程中,CPU将不断重启*/
ldr r0, =0x53000000 //ldr:从内存中将一个32位的字读取到目标寄存器,WTCON=0X53000000
ldr r1, =0
str r1, [r0] //str:将一个32位的字数据写入到指令中指定的内存单元,将r1保存到地址[r0]中,[r0]=r1
/*1.3 关闭中断*/
ldr r0 , =0x4a000008 //主中断屏蔽寄存器(32位,每位对应一个中断):INTMASK:0x4A000008,复位值0xFFFFFFFF屏蔽所有中断源
ldr r1 , =0xffffffff
str r1 , [r0]
ldr r0 , =0x4a00001c //次中断屏蔽寄存器(32位,[14:0]有效):INTSUBMSK:0x4A00001c,复位值0x7FFF
ldr r1 , =0x7fff
str r1 , [r0]
/*1.4. 代码中的c0,c1,c7,c8都是ARM920T的协处理器CP15的寄存器。其中c7是cache控制寄存器,c8是TLB控制寄存器*/
/*使数据cache与指令cache无效*/
mov r0, #0
mcr p15, 0, r0, c7, c7, 0 /* 向c7写入0将使ICache与DCache无效*/
mcr p15, 0, r0, c8, c7, 0 /* 向c8写入0将使TLB失效 ,协处理器*/
/*1.9. disable MMU stuff and caches*/
mrc p15, 0, r0, c1, c0, 0 /* 读出控制寄存器到r0中 */
bic r0, r0, #0x00002300 @ clear bits 13, 9:8 (--V- --RS)
bic r0, r0, #0x00000087 @ clear bits 7, 2:0 (B--- -CAM)
orr r0, r0, #0x00000002 @ set bit 2 (A) Align
orr r0, r0, #0x00001000 @ set bit 12 (I) I-Cache
mcr p15, 0, r0, c1, c0, 0 /* 保存r0到控制寄存器 */
/*1.5 设置堆栈.判断是nor启动还是nand启动初始化sp指针*/
/* NAND启动时,片内内存从0开始, sp=4096 */
/* NOR启动时,片内内存从0x40000000开始, sp=0x40000000+4096 */
ldr r1 ,=0
str r1, [r1] /* 在0地址写入0 */
ldr r1, [r1] /* 从0地址读出数据 */
cmp r1, #0
ldreq sp, =4096
ldrne sp, =(0x40000000+4096)
/*1.6 时钟初始化*/
bl clock_init
/*1.7. 初始化SDRAM */
bl sdram_init
/*1.8. 初始化nand */
bl nand_init
/* 2.1 重定位: 从flash里把程序本身复制到sdram里去 */
relocate: /* relocate U-Boot to RAM */
mov r0, #0
ldr r1, =__start
ldr r2, =__bss_start
sub r2, r2, r1
bl CopyCode2Ram
led1:
ldr r0,=0x56000050
ldr r1,=0x5500
str r1,[r0]
ldr r0,=0x56000054
ldr r1,=0xef
str r1,[r0]
/* 2.2. 清bss段 */
ldr r0,= __bss_start
ldr r1, =__bss_end
cmp r0, r1
beq setup_stack
mov r2, #0
clear_loop:
str r2, [r0], #4
cmp r0, r1
bne clear_loop
led2:
ldr r0,=0x56000050
ldr r1,=0x5500
str r1,[r0]
ldr r0,=0x56000054
ldr r1,=0xdf
str r1,[r0]
/* 2.3. 设置栈, 调用c函数 */
setup_stack:
/* 前面已经设置sp, 这里不用再设置 */
ldr pc, =main /* 跳到sdram里去 */
2.2、clock.c
#define CLKDIVN (*((volatile unsigned long *)0x4C000014))
#define MPLLCON (*((volatile unsigned long *)0x4C000004))
void clock_init(void)
{
/*1.设置CLKDIVN*/
CLKDIVN = 5; /* 设置CLKDIVN为5,就是讲HDIVN设置为二进制的10,由于CAMDIVN[9]没有被改变过,取默认值0,因此HCLK=FCLK/4.PDIVN被设置为1,因此PLCK=HCLK/2.因此分频比FCLK:HCLK:PCLK=1:4:8 */
/*2.将总线模式改为异步总线模式*/
__asm__(
"mrc p15, 0, r1, c1, c0, 0\n"
"orr r1, r1, #0xc0000000\n"
"mcr p15, 0, r1, c1, c0, 0\n"
);
/*3.设置MPLLCON*/
MPLLCON=0x5c011;
}
2.3、sdram.c
void sdram_init(void)
{
volatile unsigned long *p = (volatile unsigned long *)0x48000000; /* BWSCON 0x48000000 */
p[0] = 0x22011110; /* BWSCON */
p[1] = 0x700; /* BANKCON0 */
p[2] = 0x700; /* BANKCON1 */
p[3] = 0x700; /* BANKCON2 */
p[4] = 0x700; /* BANKCON3 */
p[5] = 0x700; /* BANKCON4 */
p[6] = 0x700; /* BANKCON5 */
p[7] = 0x18005; /* BANKCON6 */
p[8] = 0x18005; /* BANKCON7 */
p[9] = 0x8c04f4; /* REFRESH: Refresh count = 2^11 + 1 - 100x7.8125 = 1268 */
p[10] = 0xB1; /* BANKSIZE */
p[11] = 0x30; /* MRSRB6 */
p[12] = 0x30; /* MRSRB7 */
}
2.4、nand.c
#define NFCONF (*((volatile unsigned long *)0x4E000000))
#define NFCONT (*((volatile unsigned long *)0x4E000004))
#define NFCMMD (*((volatile unsigned char *)0x4E000008))
#define NFADDR (*((volatile unsigned char *)0x4E00000c))
#define NFDATA (*((volatile unsigned char *)0x4E000010))
#define NFSTAT (*((volatile unsigned long *)0x4E000020))
static void nand_select(void)
{
NFCONT &= ~(1<<1);
}
static void nand_deselect(void)
{
NFCONT |= (1<<1);
}
static void nand_cmd(int cmd)
{
NFCMMD= cmd;
}
static void wait_ready(void)
{
while(!(NFSTAT & 1));
}
static void nand_reset(void)
{
/*1,使能芯片*/
nand_select();
/*2,写复位0xff命令*/
nand_cmd(0xff);
/*3.等待忙状态*/
wait_ready();
/*4,关闭芯片*/
nand_deselect();
}
/*nand 初始化函数*/
void nand_init(void)
{
/*1.设置时序*/
#define TACLS 2
#define TWRPH0 1
#define TWRPH1 0
NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4);
/*2.使能NAND Flash控制器, 初始化ECC, 禁止片选 */
NFCONT = (1<<4)|(1<<1)|(1<<0);
/*3.reset*/
nand_reset();
}
static void nand_addr(unsigned int addr)
{
int i;
int col, page;
col = addr & 2047;
page = addr / 2048;
NFADDR = col & 0xff; /* Column Address A0~A7 */
for(i=0; i<10; i++);
NFADDR = (col >> 8) & 0x0f; /* Column Address A8~A11 */
for(i=0; i<10; i++);
NFADDR = page & 0xff; /* Row Address A12~A19 */
for(i=0; i<10; i++);
NFADDR = (page >> 8) & 0xff; /* Row Address A20~A27 */
for(i=0; i<10; i++);
//NFADDR = (page >> 16) & 0x03; /* Row Address A28~A29 */
NFADDR = (page >> 16) & 0x01; /* Row Address A28 */
for(i=0; i<10; i++);
}
static unsigned char nand_get_data(void)
{
return NFDATA;
}
void nand_read(unsigned char *buf, unsigned long start_addr, int size)
{
int i ,j ;
int offset;
/*1,选中芯片*/
nand_select();
for(i=start_addr;i<(start_addr+size);)
{
offset = start_addr & 2047 ;
/*2.发出read0命令*/
nand_cmd(0);
/*3,发地址*/
nand_addr(i);
/*4,发出read30命令*/
nand_cmd(0x30);
/*5,等待忙状态*/
wait_ready();
/*6,读数据*/
for(j=0;j<(2048-offset);j++,i++)
{
*buf = nand_get_data();
buf++;
}
}
/*7.关闭芯片*/
nand_deselect();
}
static int bBootFrmNORFlash(void)
{
volatile unsigned int *pdw = (volatile unsigned int *)0;
unsigned int dwVal;
dwVal = *pdw;
*pdw = 0x12345678;
if (*pdw != 0x12345678)
{
return 1;
}
else
{
*pdw = dwVal;
return 0;
}
}
int CopyCode2Ram(unsigned long start_addr, unsigned char *buf, int size)
{
unsigned int *pdwDest;
unsigned int *pdwSrc;
int i;
if (bBootFrmNORFlash())
{
pdwDest = (unsigned int *)buf;
pdwSrc = (unsigned int *)start_addr;
// 从 NOR Flash启动
for (i = 0; i < size / 4; i++)
{
pdwDest[i] = pdwSrc[i];
}
return 0;
}
else
{
nand_init();
nand_read(buf, start_addr, size );
return 0;
}
}
2.5、main.c
int main(void)
{
void (*theKernel)(int zero, int machine_id, int params_addr);
/* 0. 初始化串口: 内核启动时会用到串口输出一些信息 */
uart_init();
puts("============MINI_BOOT for MY2440============\n\rCopy kernel for flash to sdram ...\n\r");
/* 1. 从NAND FLASH里把内核读到SDRAM里去 */
nand_read(0x30108000, 0x60000, 0x300000);
puts("OK\n\r");
/* 2. 设置参数 */
puts("Set parametes ...");
set_params();
puts("OK\n\r");
/* 3. 启动内核 */
puts("Boot kernel ...\n\r");
theKernel = 0x30108040;
theKernel(0, 362, 0x30000100);
puts("\nerror!\n\r");
return 0;
}
2.6、uart.c
#define ULCON0 (*((volatile unsigned long *)0x50000000))
#define UCON0 (*((volatile unsigned long *)0x50000004))
#define UFCON0 (*((volatile unsigned long *)0x50000008))
#define UMCON0 (*((volatile unsigned long *)0x5000000C))
#define UTRSTAT0 (*((volatile unsigned long *)0x50000010))
#define UBRDIV0 (*((volatile unsigned long *)0x50000028))
#define UTXH0 (*((volatile unsigned char *)0x50000020))
#define URXH0 (*((volatile unsigned char *)0x50000024))
#define GPHCON (*((volatile unsigned long *)0x56000070))
void putc(char c)
{
/* 如果上一个数据还没有发送出去, 等待 */
while ((UTRSTAT0 & (1<<2)) == 0);
UTXH0 = c;
}
char getc(void)
{
/* 如果没有接收到数据, 等待 */
while ((UTRSTAT0 & (1<<0)) == 0);
return URXH0;
}
void puts(char *str)
{
int i = 0;
while (str[i])
{
putc(str[i]);
i++;
}
}
void uart_init(void)
{
GPHCON &= ~0xff;
GPHCON |= 0xA0;
ULCON0 = 0x03; /* 8n1 */
UCON0 = 0x05; /* 查询方式 */
UFCON0 = 0; /* 不使用FIFO */
UMCON0 = 0; /* 不使用流控 */
/* 设置波特率 */
/* UBRDIV0 = (int)(PCLK / (bps x 16) ) –1
* = 50,000,000 / (115200 x 16) - 1
* = 26
* 真正的波特率 = PCLK / (UBRDIV0 + 1) / 16
* = 115740.7
*/
UBRDIV0 = 26;
// puts("uart_init ok!!\n\r");
}
2.7、params.c
#include "setup.h"
static struct tag *params;
void setup_start_tag(void)
{
params = (struct tag *)0x30000100;
params->hdr.tag = ATAG_CORE;
params->hdr.size = tag_size (tag_core);
params->u.core.flags = 0;
params->u.core.pagesize = 0;
params->u.core.rootdev = 0;
params = tag_next (params); // = params + params->hdr.size
}
void setup_memory_tags(void)
{
params->hdr.tag = ATAG_MEM;
params->hdr.size = tag_size (tag_mem32);
params->u.mem.start = 0x30000000;
params->u.mem.size = 64*1024*1024;
params = tag_next (params);
}
int strlen(const char * s)
{
const char *sc;
for (sc = s; *sc != '\0'; ++sc)
/* nothing */;
return sc - s;
}
char * strcpy(char * dest,const char *src)
{
char *tmp = dest;
while ((*dest++ = *src++) != '\0')
/* nothing */;
return tmp;
}
void setup_commandline_tag(void)
{
char *p = "console=ttySAC0,115200 root=/dev/nfs nfsroot=192.168.7.106:/home/terryyuan/107fs,proto=tcp,nfsvers=3,nolock ip=192.168.7.233:192.168.7.106:192.168.7.1:255.255.255.0::eth0:off";
params->hdr.tag = ATAG_CMDLINE;
params->hdr.size =
(sizeof (struct tag_header) + strlen (p) + 1 + 3) >> 2;
strcpy(params->u.cmdline.cmdline, p);
params = tag_next (params);
}
void setup_end_tag ()
{
params->hdr.tag = ATAG_NONE;
params->hdr.size = 0;
}
void set_params(void)
{
setup_start_tag ();
setup_memory_tags();
setup_commandline_tag ();
setup_end_tag ();
}
2.8、setup.h
/*
* linux/include/asm/setup.h
*
* Copyright (C) 1997-1999 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Structure passed to kernel to tell it about the
* hardware it's running on. See linux/Documentation/arm/Setup
* for more info.
*
* NOTE:
* This file contains two ways to pass information from the boot
* loader to the kernel. The old struct param_struct is deprecated,
* but it will be kept in the kernel for 5 years from now
* (2001). This will allow boot loaders to convert to the new struct
* tag way.
*/
#ifndef __ASMARM_SETUP_H
#define __ASMARM_SETUP_H
#define u8 unsigned char
#define u16 unsigned short
#define u32 unsigned int
/*
* Usage:
* - do not go blindly adding fields, add them at the end
* - when adding fields, don't rely on the address until
* a patch from me has been released
* - unused fields should be zero (for future expansion)
* - this structure is relatively short-lived - only
* guaranteed to contain useful data in setup_arch()
*/
#define COMMAND_LINE_SIZE 1024
/* This is the old deprecated way to pass parameters to the kernel */
struct param_struct {
union {
struct {
unsigned long page_size; /* 0 */
unsigned long nr_pages; /* 4 */
unsigned long ramdisk_size; /* 8 */
unsigned long flags; /* 12 */
#define FLAG_READONLY 1
#define FLAG_RDLOAD 4
#define FLAG_RDPROMPT 8
unsigned long rootdev; /* 16 */
unsigned long video_num_cols; /* 20 */
unsigned long video_num_rows; /* 24 */
unsigned long video_x; /* 28 */
unsigned long video_y; /* 32 */
unsigned long memc_control_reg; /* 36 */
unsigned char sounddefault; /* 40 */
unsigned char adfsdrives; /* 41 */
unsigned char bytes_per_char_h; /* 42 */
unsigned char bytes_per_char_v; /* 43 */
unsigned long pages_in_bank[4]; /* 44 */
unsigned long pages_in_vram; /* 60 */
unsigned long initrd_start; /* 64 */
unsigned long initrd_size; /* 68 */
unsigned long rd_start; /* 72 */
unsigned long system_rev; /* 76 */
unsigned long system_serial_low; /* 80 */
unsigned long system_serial_high; /* 84 */
unsigned long mem_fclk_21285; /* 88 */
} s;
char unused[256];
} u1;
union {
char paths[8][128];
struct {
unsigned long magic;
char n[1024 - sizeof(unsigned long)];
} s;
} u2;
char commandline[COMMAND_LINE_SIZE];
};
/*
* The new way of passing information: a list of tagged entries
*/
/* The list ends with an ATAG_NONE node. */
#define ATAG_NONE 0x00000000
struct tag_header {
u32 size;
u32 tag;
};
/* The list must start with an ATAG_CORE node */
#define ATAG_CORE 0x54410001
struct tag_core {
u32 flags; /* bit 0 = read-only */
u32 pagesize;
u32 rootdev;
};
/* it is allowed to have multiple ATAG_MEM nodes */
#define ATAG_MEM 0x54410002
struct tag_mem32 {
u32 size;
u32 start; /* physical start address */
};
/* VGA text type displays */
#define ATAG_VIDEOTEXT 0x54410003
struct tag_videotext {
u8 x;
u8 y;
u16 video_page;
u8 video_mode;
u8 video_cols;
u16 video_ega_bx;
u8 video_lines;
u8 video_isvga;
u16 video_points;
};
/* describes how the ramdisk will be used in kernel */
#define ATAG_RAMDISK 0x54410004
struct tag_ramdisk {
u32 flags; /* bit 0 = load, bit 1 = prompt */
u32 size; /* decompressed ramdisk size in _kilo_ bytes */
u32 start; /* starting block of floppy-based RAM disk image */
};
/* describes where the compressed ramdisk image lives (virtual address) */
/*
* this one accidentally used virtual addresses - as such,
* its depreciated.
*/
#define ATAG_INITRD 0x54410005
/* describes where the compressed ramdisk image lives (physical address) */
#define ATAG_INITRD2 0x54420005
struct tag_initrd {
u32 start; /* physical start address */
u32 size; /* size of compressed ramdisk image in bytes */
};
/* board serial number. "64 bits should be enough for everybody" */
#define ATAG_SERIAL 0x54410006
struct tag_serialnr {
u32 low;
u32 high;
};
/* board revision */
#define ATAG_REVISION 0x54410007
struct tag_revision {
u32 rev;
};
/* initial values for vesafb-type framebuffers. see struct screen_info
* in include/linux/tty.h
*/
#define ATAG_VIDEOLFB 0x54410008
struct tag_videolfb {
u16 lfb_width;
u16 lfb_height;
u16 lfb_depth;
u16 lfb_linelength;
u32 lfb_base;
u32 lfb_size;
u8 red_size;
u8 red_pos;
u8 green_size;
u8 green_pos;
u8 blue_size;
u8 blue_pos;
u8 rsvd_size;
u8 rsvd_pos;
};
/* command line: \0 terminated string */
#define ATAG_CMDLINE 0x54410009
struct tag_cmdline {
char cmdline[1]; /* this is the minimum size */
};
/* acorn RiscPC specific information */
#define ATAG_ACORN 0x41000101
struct tag_acorn {
u32 memc_control_reg;
u32 vram_pages;
u8 sounddefault;
u8 adfsdrives;
};
/* footbridge memory clock, see arch/arm/mach-footbridge/arch.c */
#define ATAG_MEMCLK 0x41000402
struct tag_memclk {
u32 fmemclk;
};
struct tag {
struct tag_header hdr;
union {
struct tag_core core;
struct tag_mem32 mem;
struct tag_videotext videotext;
struct tag_ramdisk ramdisk;
struct tag_initrd initrd;
struct tag_serialnr serialnr;
struct tag_revision revision;
struct tag_videolfb videolfb;
struct tag_cmdline cmdline;
/*
* Acorn specific
*/
struct tag_acorn acorn;
/*
* DC21285 specific
*/
struct tag_memclk memclk;
} u;
};
struct tagtable {
u32 tag;
int (*parse)(const struct tag *);
};
#define __tag __attribute__((unused, __section__(".taglist")))
#define __tagtable(tag, fn) \
static struct tagtable __tagtable_##fn __tag = { tag, fn }
#define tag_member_present(tag,member) \
((unsigned long)(&((struct tag *)0L)->member + 1) \
<= (tag)->hdr.size * 4)
#define tag_next(t) ((struct tag *)((u32 *)(t) + (t)->hdr.size))
#define tag_size(type) ((sizeof(struct tag_header) + sizeof(struct type)) >> 2)
#define for_each_tag(t,base) \
for (t = base; t->hdr.size; t = tag_next(t))
/*
* Memory map description
*/
#define NR_BANKS 8
struct meminfo {
t nr_banks;
unsigned long end;
struct {
unsigned long start;
unsigned long size;
int node;
}
bank[NR_BANKS];
};
extern struct meminfo meminfo;
#endif