看ArrayBlockingQueue的javadoc说明,简单翻译过来:
1.基于数组实现的有界阻塞队列,队列采用FIFO;
2.因为基于数组,所以队列创建后大小不能改变。线程在插入元素到一个满的队列时会阻塞,线程获取元素时,队列为空也会阻塞;
3.对于队列的生产和消费线程提供了公平非公平策略。
ArrayBlockingQueue继承AbstractQueue抽象类,实现了BlockingQueue接口,BlockingQueue接口也在juc包,看下先:
public interface BlockingQueue<E> extends Queue<E> { /** * 插入元素到队列,成功就true,失败就IllegalStateException异常 */ boolean add(E e); /** * 跟add一样,插入元素到队列,成功就true,不过失败的时候是false,不是异常 */ boolean offer(E e); /** * 插入元素到队列,跟上面2个的区别是add跟offer如果插入的时候队列full就直接返回false,而put会加入到条件队列 */ void put(E e) throws InterruptedException; /** * 插入元素到队列,如果队列full,就等待timeout时间,还不行就返回false */ boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException; /** * 获取元素,队列空的时候会等待 */ E take() throws InterruptedException; /** * 获取元素,队列空的时候会等待timeout时间 */ E poll(long timeout, TimeUnit unit) throws InterruptedException; /** * 获取剩余容量,不能通过检查这个方法判断插入操作是否成功,因为可能有别的线程插入或删除元素 */ int remainingCapacity(); boolean remove(Object o); public boolean contains(Object o); /** * 从队列移除元素,添加到新的 */ int drainTo(Collection<? super E> c); /** * 移除指定大小的元素,添加到新的 int drainTo(Collection<? super E> c, int maxElements); }
//数组存储队列元素 final Object[] items; /** 队列获取位置 for next take, poll, peek or remove */ int takeIndex; /** 队列存储位置 for next put, offer, or add */ int putIndex; /** 队列元素个数 */ int count; /* * 利用可重入锁ReentrantLock控制并发 */ /** Main lock guarding all access */ final ReentrantLock lock; /** 条件队列控制获取 */ private final Condition notEmpty; /** 条件队列控制put */ private final Condition notFull; /** *初始化,传入队列大小和重入锁的公平策略,默认非公平 */ public ArrayBlockingQueue(int capacity) { this(capacity, false); } public ArrayBlockingQueue(int capacity, boolean fair) { if (capacity <= 0) throw new IllegalArgumentException(); this.items = new Object[capacity]; lock = new ReentrantLock(fair); notEmpty = lock.newCondition(); notFull = lock.newCondition(); }
看下几个重要方法:
add和offer:
//add操作和offer的区别就在于插入的时候队列full是返回异常还是false public boolean add(E e) { return super.add(e); } 调用AbstractQueue中的: public boolean add(E e) { if (offer(e)) return true; else throw new IllegalStateException("Queue full"); } 回到ArrayBlockingQueue的offer public boolean offer(E e) { checkNotNull(e); //单独提出一个方法判null final ReentrantLock lock = this.lock; lock.lock(); //获取锁 try { if (count == items.length) //队列满时返回false return false; else { insert(e); //队列不满就插入元素,返回true return true; } } finally { lock.unlock(); //释放条件锁 } } //响应超时时间的存储 public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException { checkNotNull(e); long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); //响应中断 try { while (count == items.length) { //offer的时候队列full if (nanos <= 0) //重新唤醒后检查超时,小于0就返回false,不行就继续条件队列park return false; nanos = notFull.awaitNanos(nanos); //加入lock条件队列,底层park指定时间 } insert(e); return true; } finally { lock.unlock(); } } private static void checkNotNull(Object v) { if (v == null) throw new NullPointerException(); } //插入元素 private void insert(E x) { items[putIndex] = x; putIndex = inc(putIndex); //新的put位置 ++count; notEmpty.signal(); //这里在插入元素后通知lock的非空条件队列上的线程 } //使用使用数组 final int inc(int i) { return (++i == items.length) ? 0 : i; }
public void put(E e) throws InterruptedException { checkNotNull(e); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); //可中断 try { while (count == items.length) //存储时队列满,noteFull条件队列等待 notFull.await(); insert(e); //插入元素 } finally { lock.unlock(); } } public E take() throws InterruptedException { final ReentrantLock lock = this.lock; lock.lockInterruptibly(); //可中断 try { while (count == 0) //获取时队列空,notEmpty条件队列等待 notEmpty.await(); return extract(); //获取元素 } finally { lock.unlock(); } } private E extract() { final Object[] items = this.items; E x = this.<E>cast(items[takeIndex]); //类型转换,单独出来的方法 items[takeIndex] = null; takeIndex = inc(takeIndex); //改变take位置 --count; notFull.signal(); //获取元素后,需要通知所有等待插入条件队列线程可以插入元素 return x; }
看下poll:
public E poll() { final ReentrantLock lock = this.lock; lock.lock(); try { return (count == 0) ? null : extract(); //获取锁后,队列不空就返回当前,否则返回null } finally { lock.unlock(); } } public E poll(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); final ReentrantLock lock = this.lock; lock.lockInterruptibly(); //可中断 try { while (count == 0) { if (nanos <= 0) return null; //返回null nanos = notEmpty.awaitNanos(nanos); //获取锁,响应超时的获取 } return extract(); } finally { lock.unlock(); } }
其他方法都差不多,看起来还是相对简单的。