1.基于DCT的图像压缩方法是将一幅图像分割成矩形像素块,再分别对每一独立的像素块DCT变换、量化、编码和传输。
2.打开VS2010,新建Visual C++下Win32控制台应用程序demo,主程序如下:
// demo.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include "highgui.h"
#include <math.h>
#include <cv.h>
#include "cxcore.h"
#define cvCvtPlaneToPix cvMerge
double PSNR_B = 0;
double PSNR_G = 0;
double PSNR_R = 0;
double PSNR;
int _tmain(int argc, _TCHAR* argv[])
{
const char* imagename = "D:/demo/demo.jpg";
IplImage *src;
CvScalar SrcPixel;
CvScalar DstPixel;
double sumB = 0;
double sumG = 0;
double sumR = 0;
double mseB;
double mseG;
double mseR;
src= cvLoadImage( imagename,1 ) ;
if( !src )
{
printf("can't open the image...\n");
return -1;
}
// YUV颜色空间
IplImage* YUVImage = cvCreateImage(cvSize(src->width,src->height), src->depth, 3);
IplImage* dst = cvCreateImage(cvSize(src->width,src->height), src->depth, 3);
// YUV颜色空间各通道
IplImage* Y = cvCreateImage(cvSize(src->width,src->height), IPL_DEPTH_8U, 1);
IplImage* U = cvCreateImage(cvSize(src->width,src->height), IPL_DEPTH_8U, 1);
IplImage* V = cvCreateImage(cvSize(src->width,src->height), IPL_DEPTH_8U, 1);
//cvNamedWindow( "Origin Image", CV_WINDOW_AUTOSIZE );
cvCvtColor(src, YUVImage, CV_BGR2YUV); //BGR→YUV
cvSplit( YUVImage, Y, U, V, NULL);//分割通道
CvMat* MatY = cvCreateMat(Y->height,Y->width,CV_64FC1);
CvMat* MatU = cvCreateMat(V->height,U->width,CV_64FC1);
CvMat* MatV = cvCreateMat(V->height,V->width,CV_64FC1);
CvMat* DCTY = cvCreateMat(Y->height, Y->width,CV_64FC1);
CvMat* DCTU = cvCreateMat(U->height, U->width,CV_64FC1);
CvMat* DCTV = cvCreateMat(V->height, V->width,CV_64FC1);
cvScale( Y, MatY );
cvScale( U, MatU );
cvScale( V, MatV );
cvDCT(MatY, DCTY, CV_DXT_FORWARD); //余弦变换
cvDCT(MatU, DCTU, CV_DXT_FORWARD); //余弦变换
cvDCT(MatV, DCTV, CV_DXT_FORWARD); //余弦变换
//Y 通道压缩
for(int i = 0; i < Y->height; i++)
{
for(int j = 0; j < Y->width; j++)
{
double element = CV_MAT_ELEM( *DCTY, double, i, j );
if ( abs(element) < 10 )
CV_MAT_ELEM( *DCTY, double, i, j ) = 0;
}
}
// U 通道压缩
for(int i = 0; i < U->height; i++)
{
for(int j = 0; j < U->width; j++)
{
double element = CV_MAT_ELEM( *DCTU, double, i, j );
if ( abs(element) < 20 )
CV_MAT_ELEM( *DCTU, double, i, j ) = 0;
}
}
// V 通道压缩
for(int i = 0; i < V->height; i++)
{
for(int j = 0; j < V->width; j++)
{
double element = CV_MAT_ELEM( *DCTV, double, i, j );
if ( abs(element) < 20 )
CV_MAT_ELEM( *DCTV, double, i, j ) = 0;
}
}
cvDCT(DCTY, MatY, CV_DXT_INVERSE); //余弦反变换
cvDCT(DCTU, MatU, CV_DXT_INVERSE);
cvDCT(DCTV, MatV, CV_DXT_INVERSE);
cvScale( MatY, Y );
cvScale( MatU, U );
cvScale( MatV, V );
cvMerge( Y, U, V, NULL, YUVImage );
cvCvtColor( YUVImage, dst, CV_YUV2BGR); //YUV→BGR
// 计算前后两幅图像的PSNR值
for(int i = 0; i < src->height; i++)
{
for(int j = 0; j < src->width; j++)
{
SrcPixel = cvGet2D( src, i, j );
DstPixel = cvGet2D( dst, i, j );
sumB += ( SrcPixel.val[0] - DstPixel.val[0] ) * ( SrcPixel.val[0] - DstPixel.val[0] );
sumG += ( SrcPixel.val[1] - DstPixel.val[1] ) * ( SrcPixel.val[1] - DstPixel.val[1] );
sumR += ( SrcPixel.val[2] - DstPixel.val[2] ) * ( SrcPixel.val[2] - DstPixel.val[2] );
}
}
mseB = sumB / ((src->width) * (src->height)); //计算均方差
mseG = sumG / ((src->width) * (src->height));
mseR = sumR / ((src->width) * (src->height));
PSNR_B = 10.0 * ( log10( 255.0 * 255.0 / mseB ) );
PSNR_G = 10.0 * ( log10( 255.0 * 255.0 / mseG ) );
PSNR_R = 10.0 * ( log10( 255.0 * 255.0 / mseR ) );
PSNR=(PSNR_B + PSNR_G + PSNR_R) / 3;
cvShowImage( "YImage", Y );
cvShowImage( "UImage", U );
cvShowImage( "VImage", V );
cvShowImage( "DstImage", dst );
cvSaveImage( "D:/demo/dstdemo.jpg", dst);
while( 1 )
{
if( cvWaitKey(0) == 27 ) break;
}
cvDestroyWindow("YImage");
cvDestroyWindow("UImage");
cvDestroyWindow("VImage");
cvDestroyWindow("DstImage");
cvReleaseImage(&Y);
cvReleaseImage(&U);
cvReleaseImage(&V);
cvReleaseImage(&src);
cvReleaseImage(&dst);
cvReleaseImage(&YUVImage);
return 0;
}
3.参考用,jpg图片越压缩越大,代码有待优化来达到压缩效果!