<span style="font-size:18px;">clc clear tic %% 训练数据预测数据提取及归一化 %下载输入输出数据 load data1 input output %从1到2000间随机排序 k=rand(1,4000); [m,n]=sort(k); %找出训练数据和预测数据 input_train=input(n(1:3900),:)'; output_train=output(n(1:3900),:)'; input_test=input(n(3901:4000),:)'; output_test=output(n(3901:4000),:)'; %选连样本输入输出数据归一化 [inputn,inputps]=mapminmax(input_train); [outputn,outputps]=mapminmax(output_train); %% BP网络训练 % %初始化网络结构 net=newff(inputn,outputn,5); net.trainParam.epochs=100; net.trainParam.lr=0.1; net.trainParam.goal=0.0000004; %网络训练 net=train(net,inputn,outputn); %% BP网络预测 %预测数据归一化 inputn_test=mapminmax('apply',input_test,inputps); %网络预测输出 an=sim(net,inputn_test); %网络输出反归一化 BPoutput=mapminmax('reverse',an,outputps); %% 结果分析 figure(1) plot(BPoutput,':og') hold on plot(output_test,'-*'); legend('预测输出','期望输出','fontsize',12) title('BP网络预测输出','fontsize',12) xlabel('样本','fontsize',12) ylabel('输出','fontsize',12) %预测误差 error=BPoutput-output_test; figure(2) plot(error,'-*') title('神经网络预测误差') figure(3) plot((output_test-BPoutput)./BPoutput,'-*'); title('神经网络预测误差百分比') errorsum=sum(abs(error)) toc save data net inputps outputps</span>
遗传算法部分:
<span style="font-size:18px;">%% 该代码为基于神经网络遗传算法的系统极值寻优 %% 清空环境变量 clc clear %% 初始化遗传算法参数 %初始化参数 maxgen=100; %进化代数,即迭代次数 sizepop=20; %种群规模 pcross=[0.4]; %交叉概率选择,0和1之间 pmutation=[0.2]; %变异概率选择,0和1之间 lenchrom=[1 1]; %每个变量的字串长度,如果是浮点变量,则长度都为1 bound=[-5 5;-5 5]; %数据范围 individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体 avgfitness=[]; %每一代种群的平均适应度 bestfitness=[]; %每一代种群的最佳适应度 bestchrom=[]; %适应度最好的染色体 %% 初始化种群计算适应度值 % 初始化种群 for i=1:sizepop %随机产生一个种群 individuals.chrom(i,:)=Code(lenchrom,bound); x=individuals.chrom(i,:); %计算适应度 individuals.fitness(i)=fun(x); %染色体的适应度 end %找最好的染色体 [bestfitness bestindex]=min(individuals.fitness); bestchrom=individuals.chrom(bestindex,:); %最好的染色体 avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度 % 记录每一代进化中最好的适应度和平均适应度 trace=[avgfitness bestfitness]; %% 迭代寻优 % 进化开始 for i=1:maxgen i % 选择 individuals=Select(individuals,sizepop); avgfitness=sum(individuals.fitness)/sizepop; %交叉 individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound); % 变异 individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,[i maxgen],bound); % 计算适应度 for j=1:sizepop x=individuals.chrom(j,:); %解码 individuals.fitness(j)=fun(x); end %找到最小和最大适应度的染色体及它们在种群中的位置 [newbestfitness,newbestindex]=min(individuals.fitness); [worestfitness,worestindex]=max(individuals.fitness); % 代替上一次进化中最好的染色体 if bestfitness>newbestfitness bestfitness=newbestfitness; bestchrom=individuals.chrom(newbestindex,:); end individuals.chrom(worestindex,:)=bestchrom; individuals.fitness(worestindex)=bestfitness; avgfitness=sum(individuals.fitness)/sizepop; trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度 end %进化结束 %% 结果分析 [r c]=size(trace); plot([1:r]',trace(:,2),'r-'); title('适应度曲线','fontsize',12); xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12); axis([0,100,0,1]) disp('适应度 变量'); x=bestchrom; % 窗口显示 disp([bestfitness x]); </span>