opencv程序八:灰度直方图均衡化

根据第一篇创建项目并添加两个文件

程序如下:

// 14EqualizeHist.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include <opencv2/opencv.hpp>  
#include <opencv2/legacy/compat.hpp>  
using namespace std;  
#pragma comment(linker, "/subsystem:\"windows\" /entry:\"mainCRTStartup\"")  
void FillWhite(IplImage *pImage)  
{  
    cvRectangle(pImage, cvPoint(0, 0), cvPoint(pImage->width, pImage->height), CV_RGB(255, 255, 255), CV_FILLED);  
}  
// 创建灰度图像的直方图  
CvHistogram* CreateGrayImageHist(IplImage **ppImage)  
{  
    int nHistSize = 256;  
    float fRange[] = {0, 255};  //灰度级的范围    
    float *pfRanges[] = {fRange};    
    CvHistogram *pcvHistogram = cvCreateHist(1, &nHistSize, CV_HIST_ARRAY, pfRanges);  
    cvCalcHist(ppImage, pcvHistogram);  
    return pcvHistogram;  
}  
// 根据直方图创建直方图图像  
IplImage* CreateHisogramImage(int nImageWidth, int nScale, int nImageHeight, CvHistogram *pcvHistogram)  
{  
    IplImage *pHistImage = cvCreateImage(cvSize(nImageWidth * nScale, nImageHeight), IPL_DEPTH_8U, 1);  
    FillWhite(pHistImage);  
  
    //统计直方图中的最大直方块  
    float fMaxHistValue = 0;  
    cvGetMinMaxHistValue(pcvHistogram, NULL, &fMaxHistValue, NULL, NULL);  
  
    //分别将每个直方块的值绘制到图中  
    int i;  
    for(i = 0; i < nImageWidth; i++)  
    {  
        float fHistValue = cvQueryHistValue_1D(pcvHistogram, i); //像素为i的直方块大小  
        int nRealHeight = cvRound((fHistValue / fMaxHistValue) * nImageHeight);  //要绘制的高度  
        cvRectangle(pHistImage,  
            cvPoint(i * nScale, nImageHeight - 1),  
            cvPoint((i + 1) * nScale - 1, nImageHeight - nRealHeight),  
            cvScalar(i, 0, 0, 0),   
            CV_FILLED  
            );   
    }  
    return pHistImage;  
}  
int main( int argc, char** argv )  
{     
    const char *pstrWindowsSrcTitle = "原图";  
    const char *pstrWindowsGrayTitle = "灰度图";  
    const char *pstrWindowsHistTitle = "直方图";  
    const char *pstrWindowsGrayEqualizeTitle = "灰度图-均衡化后";  
    const char *pstrWindowsHistEqualizeTitle = "直方图-均衡化后";  
      
    // 从文件中加载原图  
    IplImage *pSrcImage = cvLoadImage("yangmi.jpg", CV_LOAD_IMAGE_UNCHANGED);  
    IplImage *pGrayImage = cvCreateImage(cvGetSize(pSrcImage), IPL_DEPTH_8U, 1);  
    IplImage *pGrayEqualizeImage = cvCreateImage(cvGetSize(pSrcImage), IPL_DEPTH_8U, 1);  
      
    // 灰度图  
    cvCvtColor(pSrcImage, pGrayImage, CV_BGR2GRAY);  
    // 直方图图像数据  
    int nHistImageWidth = 255;  
    int nHistImageHeight = 150;   
    int nScale = 2;    
  
    // 灰度直方图及直方图图像  
    CvHistogram *pcvHistogram = CreateGrayImageHist(&pGrayImage);  
    IplImage *pHistImage = CreateHisogramImage(nHistImageWidth, nScale, nHistImageHeight, pcvHistogram);  
  
    // 均衡化  
    cvEqualizeHist(pGrayImage, pGrayEqualizeImage);  
  
    // 均衡化后的灰度直方图及直方图图像  
    CvHistogram *pcvHistogramEqualize = CreateGrayImageHist(&pGrayEqualizeImage);         
    IplImage *pHistEqualizeImage = CreateHisogramImage(nHistImageWidth, nScale, nHistImageHeight, pcvHistogramEqualize);  
  
    // 显示  
    cvNamedWindow(pstrWindowsSrcTitle, CV_WINDOW_AUTOSIZE);    
    cvNamedWindow(pstrWindowsGrayTitle, CV_WINDOW_AUTOSIZE);    
    cvNamedWindow(pstrWindowsHistTitle, CV_WINDOW_AUTOSIZE); 
	cvNamedWindow(pstrWindowsGrayEqualizeTitle, CV_WINDOW_AUTOSIZE);    
    cvNamedWindow(pstrWindowsHistEqualizeTitle, CV_WINDOW_AUTOSIZE);
    cvShowImage(pstrWindowsSrcTitle, pSrcImage);    
    cvShowImage(pstrWindowsGrayTitle, pGrayImage);    
    cvShowImage(pstrWindowsHistTitle, pHistImage);    
    cvShowImage(pstrWindowsGrayEqualizeTitle,pGrayEqualizeImage);    
    cvShowImage(pstrWindowsHistEqualizeTitle, pHistEqualizeImage); 
    
    cvWaitKey(0);    
    
    cvReleaseHist(&pcvHistogram);    
    
    cvDestroyWindow(pstrWindowsSrcTitle);    
    cvDestroyWindow(pstrWindowsGrayTitle);    
    cvDestroyWindow(pstrWindowsHistTitle); 
	cvDestroyWindow(pstrWindowsGrayEqualizeTitle);    
    cvDestroyWindow(pstrWindowsHistEqualizeTitle); 
    cvReleaseImage(&pSrcImage);    
    cvReleaseImage(&pGrayImage);    
    cvReleaseImage(&pHistImage);  
	cvReleaseImage(&pGrayEqualizeImage);    
    cvReleaseImage(&pHistEqualizeImage); 
    return 0;      
}  

本篇将介绍直方图的均衡化,这是图像增强的常用方法。直方图均衡化的数学原理这里就不介绍了,有兴趣可以查阅专业书籍。下面来看看灰度直方图均衡化的函数——cvEqualizeHist

一.cvEqualizeHist

函数功能:直方图均衡化,该函数能归一化图像亮度和增强对比度

函数原型:

/* equalizes histogram of 8-bit single-channel image */

CVAPI(void)  cvEqualizeHistconst CvArrsrcCvArrdst );

第一个参数表示输入图像,必须为灰度图(8位,单通道图)。

第二个参数表示输出图像

函数说明:

该函数采用如下法则对输入图像进行直方图均衡化:

  1:计算输入图像的直方图H

  2:直方图归一化,因此直方块和为255

  3:计算直方图积分,H'(i) = Sum(H(j)) (0<=j<=i)

  4:采用H'作为查询表:dst(x, y) = H'(src(x, y))进行图像变换。

 

在维基百科上对灰度直方图均衡化有个很好的对比,参见下图(网址:http://zh.wikipedia.org/zh-cn/%E7%9B%B4%E6%96%B9%E5%9B%BE%E5%9D%87%E8%A1%A1%E5%8C%96

opencv程序八:灰度直方图均衡化_第1张图片

可以看出直方图均衡化对图像增强的效果很不错,对图像细节部分能起到明显的突出增强效果。

运行结果如下所示:

opencv程序八:灰度直方图均衡化_第2张图片

可以看出,灰度直方图均衡化对灰度图的图像增强效果明显



你可能感兴趣的:(opencv,cvEqualizeHist,均衡化,灰度直方图)