二叉树的遍历

文章来源:http://blog.csdn.net/pkuyjxu/article/details/6888419


#include <stdio.h>

#include <malloc.h>

#include <stdlib.h>

#define OK 1

#define ERROR 0

#define OVERFLOW -2

#define MAX(a,b) (a>b?a:b)

typedef char TElemType;

typedef int Status;

//二叉树的二叉链表存储结构

typedef struct BiTNode{

TElemType data;

struct BiTNode *lchild,*rchild;

}BiTNode,*BiTree;

//先序遍历生成二叉树

Status CreatBiTree(BiTree &T){

TElemType ch,temp;

printf("输入一个元素: ");

scanf("%c",&ch);

temp=getchar(); //结束回车

if(ch==' ') T=NULL; //输入空格表示结点为空树

else{

if(!(T=(BiTree)malloc(sizeof(BiTNode)))) exit(OVERFLOW);

T->data=ch; //生成根结点

CreatBiTree(T->lchild); //构造左子树

CreatBiTree(T->rchild); //构造右子树

}

return OK;

}

//打印元素

Status PrintElem(TElemType e){

printf("%c ",e);

return OK;

}

//先序遍历二叉树

Status PreOrderTraverse(BiTree T,Status (* Visit)(TElemType e)){

if(T){ //二叉树不为空时

if(Visit(T->data)) //访问根结点

if(PreOrderTraverse(T->lchild,Visit)) //先序遍历左子树

if(PreOrderTraverse(T->rchild,Visit)) return OK; //先序遍历右子树

return ERROR;

}

else return OK;

}

//中序遍历二叉树

Status InOrderTraverse(BiTree T,Status (* Visit)(TElemType e)){

if(T){

if(InOrderTraverse(T->lchild,Visit))

if(Visit(T->data))

if(InOrderTraverse(T->rchild,Visit)) return OK;

else return ERROR;

}

return OK;

}

//后序遍历二叉树

Status PostOrderTraverse(BiTree T,Status (* Visit)(TElemType e)){

if(T){

if(PostOrderTraverse(T->lchild,Visit))

if(PostOrderTraverse(T->rchild,Visit))

if(Visit(T->data)) return OK;

else return ERROR;

}

return OK;

}

//求二叉树的深度

int BiTreeDepth(BiTree T){

if(!T) return 0; //二叉树为空树时

int Dl=0,Dr=0;

if(T->lchild) Dl=BiTreeDepth(T->lchild); //求左子树深度

if(T->rchild) Dr=BiTreeDepth(T->rchild); //求右子树深度

return MAX(Dl,Dr)+1;

}

//主函数

void main()

{

BiTree T;

Status (* Visit)(TElemType);

Visit=PrintElem;

CreatBiTree(T); a

printf("\n先序遍历:");

PreOrderTraverse(T,Visit);

printf("\n中序遍历:");

InOrderTraverse(T,Visit);

printf("\n后序遍历:");

PostOrderTraverse(T,Visit);

printf("\n二叉树深度为%d",BiTreeDepth(T));

printf("\n程序结束.\n");

}

#####################################

二叉树遍历非递归算法

1.先序遍历非递归算法

#define maxsize 100

typedef struct

{

Bitree Elem[maxsize];

int top;

}SqStack;

void PreOrderUnrec(Bitree t)

{

SqStack s;

StackInit(s);

p=t;

while (p!=null || !StackEmpty(s))

{

while (p!=null) //遍历左子树

{

visite(p->data);

push(s,p);

p=p->lchild;

}//endwhile

if (!StackEmpty(s)) //通过下一次循环中的内嵌while实现右子树遍历

{

p=pop(s);

p=p->rchild;

}//endif

}//endwhile

}//PreOrderUnrec

2.中序遍历非递归算法

#define maxsize 100

typedef struct

{

Bitree Elem[maxsize];

int top;

}SqStack;

void InOrderUnrec(Bitree t)

{

SqStack s;

StackInit(s);

p=t;

while (p!=null || !StackEmpty(s))

{

while (p!=null) //遍历左子树

{

push(s,p);

p=p->lchild;

}//endwhile

if (!StackEmpty(s))

{

p=pop(s);

visite(p->data); //访问根结点

p=p->rchild; //通过下一次循环实现右子树遍历

}//endif

}//endwhile

}//InOrderUnrec

3.后序遍历非递归算法

#define maxsize 100

typedef enum{L,R} tagtype;

typedef struct

{

Bitree ptr;

tagtype tag;

}stacknode;

typedef struct

{

stacknode Elem[maxsize];

int top;

}SqStack;

void PostOrderUnrec(Bitree t)

{

SqStack s;

stacknode x;

StackInit(s);

p=t;

do

{

while (p!=null) //遍历左子树

{

x.ptr = p;

x.tag = L; //标记为左子树

push(s,x);

p=p->lchild;

}

while (!StackEmpty(s) && s.Elem[s.top].tag==R)

{

x = pop(s);

p = x.ptr;

visite(p->data); //tag为R,表示右子树访问完毕,故访问根结点

}

if (!StackEmpty(s))

{

s.Elem[s.top].tag =R; //遍历右子树

p=s.Elem[s.top].ptr->rchild;

}

}while (!StackEmpty(s));

}//PostOrderUnrec




你可能感兴趣的:(二叉树的遍历)