RAM,ROM,FLASH存储器区别

存储器按照存取方式分为:

(1)只读存储器(ROM):只读存储器是一种对其内容只能读不能写入的存储器,即预先一次写入的存储器。通常用来存放固定不变的信息。如经常用作微程序控制存储器。目前已有可重写的只读存储器。常见的有掩模ROM(MROM),可擦除可编程ROM(EPROM),电可擦除可编程ROM(EEPROM).ROM的电路比RAM的简单、集成度高,成本低,且是一种非易失性存储器,计算机常把一些管理、监控程序、成熟的用户程序放在ROM中。

根据组成元件的不同,ROM内存又分为以下五种: 

1.MASK ROM(掩模型只读存储器) 
制造商为了大量生产ROM内存,需要先制作一颗有原始数据的ROM或EPROM作为样本,然后再大量复制,这一样本就是MASK ROM,而烧录在MASK ROM中的资料永远无法做修改。它的成本比较低。 

2.PROM(Programmable ROM,可编程只读存储器) 
这是一种可以用刻录机将资料写入的ROM内存,但只能写入一次,所以也被称为“一次可编程只读存储器”(One Time Progarmming ROM,OTP-ROM)。PROM在出厂时,存储的内容全为1,用户可以根据需要将其中的某些单元写入数据0(部分的PROM在出厂时数据全为0,则用户可以将其中的部分单元写入1), 以实现对其“编程”的目的。 

3.EPROM(Erasable Programmable,可擦可编程只读存储器) 
这是一种具有可擦除功能,擦除后即可进行再编程的ROM内存,写入前必须先把里面的内容用紫外线照射它的IC卡上的透明视窗的方式来清除掉。这一类芯片比较容易识别,其封装中包含有“石英玻璃窗”,一个编程后的EPROM芯片的“石英玻璃窗”一般使用黑色不干胶纸盖住, 以防止遭到阳光直射。 

4.EEPROM(Electrically Erasable Programmable,电可擦可编程只读存储器) 
功能与使用方式与EPROM一样,不同之处是清除数据的方式,它是以约20V的电压来进行清除的。另外它还可以用电信号进行数据写入。这类ROM内存多应用于即插即用(PnP)接口中。 

5.Flash Memory(快闪存储器) 
这是一种可以直接在主机板上修改内容而不需要将IC拔下的内存,当电源关掉后储存在里面的资料并不会流失掉,在写入资料时必须先将原本的资料清除掉,然后才能再写入新的资料,缺点为写入资料的速度太慢。

(2)串行访问存储器(SAS):如果存储器只能按某种顺序来存取,也就是说,存取时间与存储单元的物理位置有关,则这种存储器称为串行访问存储器。串行存储器又可分为顺序存取存储器(SAM)和直接存取存储器(DAM)。顺序存取存储器是完全的串行访问存储器,如磁带,信息以顺序的方式从存储介质的始端开始写入(或读出);直接存取存储器是部分串行访问存储器,如磁盘存储器,它介于顺序存取和随机存取之间。

(3)随机存储器(RAM):如果存储器中任何存储单元的内容都能被随机存取,且存取时间与存储单元的物理位置无关,则这种存储器称为随机存储器(RAM)。RAM主要用来存放各种输入/输出的程序、数据、中间运算结果以及存放与外界交换的信息和做堆栈用。随机存储器主要充当高速缓冲存储器和主存储器。

RAM 有两大类,一种称为静态RAM(Static RAM/SRAM),SRAM速度非常快,是目前读写最快的存储设备了,但是它也非常昂贵,所以只在要求很苛刻的地方使用,譬如CPU的一级缓冲,二级缓 冲。另一种称为动态RAM(Dynamic RAM/DRAM),DRAM保留数据的时间很短,速度也比SRAM慢,不过它还是比任何的ROM都要快,但从价格上来说DRAM相比SRAM要便宜很 多,计算机内存就是DRAM的。

根据组成元件的不同,RAM内存又分为以下十八种: 

01.DRAM(Dynamic RAM,动态随机存取存储器) 
这是最普通的RAM,一个电子管与一个电容器组成一个位存储单元,DRAM将每个内存位作为一个电荷保存在位存储单元中,用电容的充放电来做储存动作,但因电容本身有漏电问题,因此必须每几微秒就要刷新一次,否则数据会丢失。存取时间和放电时间一致,约为2~4ms。因为成本比较便宜,通常都用作计算机内的主存储器。 

02.SRAM(Static RAM,静态随机存取存储器) 
静态,指的是内存里面的数据可以长驻其中而不需要随时进行存取。每6颗电子管组成一个位存储单元,因为没有电容器,因此无须不断充电即可正常运作,因此它可以比一般的动态随机处理内存处理速度更快更稳定,往往用来做高速缓存。 

03.VRAM(Video RAM,视频内存) 

它的主要功能是将显卡的视频数据输出到数模转换器中,有效降低绘图显示芯片的工作负担。它采用双数据口设计,其中一个数据口是并行式的数据输出入口,另一个是串行式的数据输出口。多用于高级显卡中的高档内存。 

04.FPM DRAM(Fast Page Mode DRAM,快速页切换模式动态随机存取存储器) 
改良版的DRAM,大多数为72Pin或30Pin的模块。传统的DRAM在存取一个BIT的数据时,必须送出行地址和列地址各一次才能读写数据。而FRM DRAM在触发了行地址后,如果CPU需要的地址在同一行内,则可以连续输出列地址而不必再输出行地址了。由于一般的程序和数据在内存中排列的地址是连续的,这种情况下输出行地址后连续输出列地址就可以得到所需要的数据。FPM将记忆体内部隔成许多页数Pages,从512B到数KB不等,在读取一连续区域内的数据时,就可以通过快速页切换模式来直接读取各page内的资料,从而大大提高读取速度。在96年以前,在486时代和PENTIUM时代的初期, FPM DRAM被大量使用。 

05.EDO DRAM(Extended Data Out DRAM,延伸数据输出动态随机存取存储器) 
这是继FPM之后出现的一种存储器,一般为72Pin、168Pin的模块。它不需要像FPM DRAM那样在存取每一BIT 数据时必须输出行地址和列地址并使其稳定一段时间,然后才能读写有效的数据,而下一个BIT的地址必须等待这次读写操作完成才能输出。因此它可以大大缩短等待输出地址的时间,其存取速度一般比FPM模式快15%左右。它一般应用于中档以下的Pentium主板标准内存,后期的486系统开始支持EDO DRAM,到96年后期,EDO DRAM开始执行。。 

06.BEDO DRAM(Burst Extended Data Out DRAM,爆发式延伸数据输出动态随机存取存储器) 
这是改良型的EDO DRAM,是由美光公司提出的,它在芯片上增加了一个地址计数器来追踪下一个地址。它是突发式的读取方式,也就是当一个数据地址被送出后,剩下的三个数据每一个都只需要一个周期就能读取,因此一次可以存取多组数据,速度比EDO DRAM快。但支持BEDO DRAM内存的主板可谓少之又少,只有极少几款提供支持(如VIA APOLLO VP2),因此很快就被DRAM取代了。 

07.MDRAM(Multi-Bank DRAM,多插槽动态随机存取存储器) 
MoSys公司提出的一种内存规格,其内部分成数个类别不同的小储存库 (BANK),也即由数个属立的小单位矩阵所构成,每个储存库之间以高于外部的资料速度相互连接,一般应用于高速显示卡或加速卡中,也有少数主机板用于L2高速缓存中。 

08.WRAM(Window RAM,窗口随机存取存储器) 
韩国Samsung公司开发的内存模式,是VRAM内存的改良版,不同之处是它的控制线路有一、二十组的输入/输出控制器,并采用EDO的资料存取模式,因此速度相对较快,另外还提供了区块搬移功能(BitBlt),可应用于专业绘图工作上。 

09.RDRAM(Rambus DRAM,高频动态随机存取存储器) 
Rambus公司独立设计完成的一种内存模式,速度一般可以达到500~530MB/s,是DRAM的10倍以上。但使用该内存后内存控制器需要作相当大的改变,因此它们一般应用于专业的图形加速适配卡或者电视游戏机的视频内存中。 

10.SDRAM(Synchronous DRAM,同步动态随机存取存储器) 
这是一种与CPU实现外频Clock同步的内存模式,一般都采用168Pin的内存模组,工作电压为3.3V。 所谓clock同步是指内存能够与CPU同步存取资料,这样可以取消等待周期,减少数据传输的延迟,因此可提升计算机的性能和效率。 

11.SGRAM(Synchronous Graphics RAM,同步绘图随机存取存储器) 
SDRAM的改良版,它以区块Block,即每32bit为基本存取单位,个别地取回或修改存取的资料,减少内存整体读写的次数,另外还针对绘图需要而增加了绘图控制器,并提供区块搬移功能(BitBlt),效率明显高于SDRAM。 

12.SB SRAM(Synchronous Burst SRAM,同步爆发式静态随机存取存储器) 
一般的SRAM是非同步的,为了适应CPU越来越快的速度,需要使它的工作时脉变得与系统同步,这就是SB SRAM产生的原因。 

13.PB SRAM(Pipeline Burst SRAM,管线爆发式静态随机存取存储器,又称假静态随机存储器) 
CPU外频速度的迅猛提升对与其相搭配的内存提出了更高的要求,管线爆发式SRAM取代同步爆发式SRAM成为必然的选择,因为它可以有效地延长存取时脉,从而有效提高访问速度。 

PSRAM具有一个单晶体管的DRAM储存格,与传统具有六个晶体管的SRAM储存格或是四个晶体管与two- load resistor SRAM 储存格大不相同,但它具有类似SRAM的稳定接口,内部的DRAM架构给予PSRAM一些比low-power 6T SRAM优异的长处,例如体积更为轻巧,售价更具竞争力。目前在整体SRAM市场中,有90%的制造商都在生产PSRAM组件。在过去两年,市场上重要的 SRAM/PSRAM供货商有Samsung、Cypress、Renesas、Micron与Toshiba等。

基本原理:

PSRAM就是伪SRAM,内部的内存颗粒跟SDRAM的颗粒相似,但外部的接口跟SRAM相似,不需要SDRAM 那样复杂的控制器和刷新机制,PSRAM的接口跟SRAM的接口是一样的。

PSRAM容量有8Mbit,16Mbit,32Mbit等等,容量没有SDRAM那样密度高,但肯定是比SRAM 的容量要高很多的,速度支持突发 模式,并不是很慢,Hynix,Coremagic, WINBOND .MICRON. CY 等厂家都有供应,价格只比相同容量的SDRAM稍贵一点点,比SRAM便宜很多。

PSRAM主要应用于手机,电子词典,掌上电脑,PDA,PMP.MP3/4,GPS接收器等消费电子产品与 SRAM(采用6T的技术)相 比,PSRAM采用的是1T+1C的技术,所以在体积上更小,同时,PSRAM的I/O接口与SRAM相同.在容量上,目前有 4MB,8MB,16MB,32MB,64MB和128MB。比较于SDRAM,PSRAM的功耗要低很多。所以对于要求有一定缓存容量的很多便携式产品 是一个理想的选择。

14.DDR SDRAM(Double Data Rate二倍速率同步动态随机存取存储器) 作为SDRAM的换代产品,它具有两大特点:其一,速度比SDRAM有一倍的提高;其二,采用了DLL(Delay Locked Loop:延时锁定回路)提供一个数据滤波信号。这是目前内存市场上的主流模式。 这是目前电脑中用 得最多的内存,而且它有着成本优势,事实上击败了Intel的另外一种内存标准-Rambus DRAM。在很多高端的显卡上,也配备了高速DDR RAM来提高带宽,这可以大幅度提高3D加速卡的像素渲染能力。 15.SLDRAM (Synchronize Link,同步链环动态随机存取存储器) 这是一种扩展型SDRAM结构内存,在增加了更先进同步电路的同时,还改进了逻辑控制电路,不过由于技术显示,投入实用的难度不小。 16.CDRAM(CACHED DRAM,同步缓存动态随机存取存储器) 这是三菱电气公司首先研制的专利技术,它是在DRAM芯片的外部插针和内部DRAM之间插入一个SRAM作为二级CACHE使用。当前,几乎所有的CPU都装有一级CACHE来提高效率,随着CPU时钟频率的成倍提高,CACHE不被选中对系统性能产生的影响将会越来越大,而CACHE DRAM所提供的二级CACHE正好用以补充CPU一级CACHE之不足,因此能极大地提高CPU效率。 17.DDRII (Double Data Rate Synchronous DRAM,第二代同步双倍速率动态随机存取存储器) DDRII 是DDR原有的SLDRAM联盟于1999年解散后将既有的研发成果与DDR整合之后的未来新标准。DDRII的详细规格目前尚未确定。 18.DRDRAM (Direct Rambus DRAM) 是下一代的主流内存标准之一,由Rambus 公司所设计发展出来,是将所有的接脚都连结到一个共同的Bus,这样不但可以减少控制器的体积,已可以增加资料传送的效率。


ROM和RAM的主要区别:

1、ROM在系统停止供电的时候仍然可以保持数据,而RAM通常都是在掉电之后就丢失数据,典型的RAM就是计算机的内存。 

2、ROM读写速度远远低于RAM

FLASH存储器:

随着电子世界的发展,出现了FLASH存储器,FLASH存储器又 称闪存,它结合了ROM和RAM的长处,不仅具备电子可擦除可编程(EEPROM)的性能,还不会断电丢失数据同时可以快速读取数据 (NVRAM的优势),U盘和MP3里用的就是这种存储器。在过去的20年里,嵌入式系统一直使用ROM(EPROM)作为它们的存储设备,然而近年来 Flash全面代替了ROM(EPROM)在嵌入式系统中的地位,用作存储Bootloader以及操作系统或者程序代码或者直接当硬盘使用(U盘)。

目前Flash主要有两种NOR Flash和NADN Flash

NOR Flash的读取和我们常见的SDRAM的读取是一样,用户可以直接运行装载在NOR FLASH里面的代码,这样可以减少SRAM的容量从而节约了成本。

NAND Flash没有采取内存的随机读取技术,它的读取是以一次读取一块的形式来进行的,通常是一次读取512个字节,采用这种技术的Flash比较廉价。用户 不能直接运行NAND Flash上的代码,因此好多使用NAND Flash的开发板除了使用NAND Flah以外,还作上了一块小的NOR Flash来运行启动代码。

一般小容量的用NOR Flash,因为其读取速度快,多 用来存储操作系统等重要信息,而大容量的用NAND FLASH,最常见的NAND FLASH应 用是嵌入式系统采用的DOC(Disk On Chip)和我们通常用的"闪盘",可以在线擦除。目前市面上的FLASH 主要来自Intel,AMD,Fujitsu和Toshiba,而生产NAND Flash的主要厂家有Samsung和Toshiba。

NAND Flash和NOR Flash的比较

NOR和NAND是现在市场上两种主要的非易失闪存技术。Intel于1988年首先开发出NOR flash技术,彻底改变了原先由EPROM和EEPROM一统天下的局面。紧接着,1989年,东芝公司发表了NAND flash结构,强调降低每比特的成本,更高的性能,并且象磁盘一样可以通过接口轻松升级。但是经过了十多年之后,仍然有相当多的硬件工程师分不清NOR 和NAND闪存。

  "flash存储器"经常可以与"NOR存储器"互换使用。许多业内人士也搞不清楚NAND闪存技术相对于 NOR技术的优越之处,因为大多数情况下闪存只是用来存储少量的代码,这时NOR闪存更适合一些。而NAND则是高数据存储密度的理想解决方案。

NOR是现在市场上主要的非易失闪存技术。NOR一般 只用来存储少量的代码;NOR主要应用在代码存储介质中。NOR的特点是应用简单、无需专门的 接口电路、传输效率高,它是属于芯片内执行(XIP, eXecute In Place),这样应用程序可以直接在(NOR型)flash闪存内运行,不必再把代码读到系统RAM中。在1~4MB的小 容量时具有很高的成本效益,但 是很低的写入和擦除速度大大影响了它的性能。NOR flash带有SRAM接口,有足够的地址引脚来寻址,可以很容易地存取其内部的每一个字节。NOR flash占据了容量为1~16MB闪存市场的大部分。

  NAND结构能提供极高的单元密度,可以达到高存储密度,并且写入和擦除的速度也很快。应用NAND的困难在于 flash的管理和需要特殊的系统接口。

1、性能比较:

  flash闪存是非易失存储器,可以对称为块的存储器单元块进行擦写和再编程。任何flash器件的写入操作只 能在空或已擦除的单元内进行,所 以大多数情况下,在进行写入操作之前必须先执行擦除。NAND器件执行擦除操作是十分简单的,而NOR则要求在进行擦除前先要将目标块内所有的位都写为 1。

  由于擦除NOR器件时是以64~128KB的块进行的,执行一个写入/擦除操作的时间为5s,与此相反, 擦除NAND器件是以8~32KB的块进 行的,执行相同的操作最多只需要4ms。

  执行擦除时块尺寸的不同进一步拉大了NOR和NADN之间的性能差距,统计表明,对于给定的一套写入操作(尤其 是更新小文件时),更多的擦除操作必须在基于NOR的单元中进行。这样,当选择存储解决方案时,设计师必须权衡以下的各项因素:

  ● NOR的读速度比NAND稍快一些。

  ● NAND的写入速度比NOR快很多。

  ● NAND的4ms擦除速度远比NOR的5s快。

  ● 大多数写入操作需要先进行擦除操作。

  ● NAND的擦除单元更小,相应的擦除电路更少。

(注:NOR FLASH SECTOR擦除时间视品牌、大小不同而不同,比如,4M FLASH,有的SECTOR擦除时间为60ms,而有的需要最大6s。)

2、接口差别:

  NOR flash带有SRAM接口,有足够的地址引脚来寻址,可以很容易地存取其内部的每一个字节。

  NAND器件使用复杂的I/O口来串行地存取数据,各个产品或厂商的方法可能各不相同。8个引脚用来传送控制、 地址和数据信息。

  NAND读和写操作采用512字节的块,这一点有点像硬盘管理此类操作,很自然地,基于NAND的存储器就可以 取代硬盘或其他块设备。

3、容量和成本:

  NAND flash的单元尺寸几乎是NOR器件的一半,由于生产过程更为简单,NAND结构可以在给定的模具尺寸内提供更高的容量,也就相应地降低了价格。

  NOR flash占据了容量为1~16MB闪存市场的大部分,而NAND flash只是用在8~128MB的产品当中,这也说明NOR主要应用在代码存储介质中,NAND适合于数据存储,NAND在CompactFlash、 Secure Digital、PC Cards和MMC存储卡市场上所占份额最大。

4、可靠性和耐用性:

  采用flahs介质时一个需要重点考虑的问题是可靠性。对于需要扩展MTBF的系统来说,Flash是非常合适 的存储方案。可以从寿命(耐用性)、位交换和坏块处理三个方面来比较NOR和NAND的可靠性。

  A) 寿命(耐用性)

  在NAND闪存中每个块的最大擦写次数是一百万次,而NOR的擦写次数是十万次。NAND存储器除了具有10比1的块擦除周期优势,典型的NAND块尺寸要比NOR器件小8 倍,每个NAND存储器块在给定的时间内的删除次数要少一些。

  B) 位交换

  所有flash器件都受位交换现象的困扰。在某些情况下(很少见,NAND发生的次数要比NOR多),一个比特(bit)位会发 生反转或被报告反转了。

  一位的变化可能不很明显,但是如果发生在一个关键文件上,这个小小的故障可能导致系统停机。如果只是报告有问 题,多读几次就可能解决了。

  当然,如果这个位真的改变了,就必须采用错误探测/错误更正 (EDC/ECC)算法。位反转的问题更多见于NAND闪存,NAND的供应商建议使用NAND闪存的时候,同时使用EDC/ECC算法。

  这个问题对于用NAND存储多媒体信息时倒不是致命的。当然,如果用本地存储设备来存储操作系统、配置文件或其 他敏感信息时,必须使用EDC/ECC系统以确保可靠性。

  C) 坏块处理

  NAND器件中的坏块是随机分布的。以前也曾有过消除坏块的努力,但发现成品率太低,代价太高,根本不划算。

  NAND器件需要对介质进行初始化扫描以发现坏块,并将坏块标记为不可用。在已制成的器件中,如果通过可靠的方 法不能进行这项处理,将导致高故障率。

5、易于使用:

  可以非常直接地使用基于NOR的闪存,可以像其他存储器那样连接,并可以在上面直接运行代码。

  由于需要I/O接口,NAND要复杂得多。各种NAND器件的存取方法因厂家而异。

  在使用NAND器件时,必须先写入驱动程序,才能继续执行其他操作。向NAND器件写入信息需要相当的技巧,因 为设计师绝不能向坏块写入,这就意味着在NAND器件上自始至终都必须进行虚拟映射。

6、软件支持:

  当讨论软件支持的时候,应该区别基本的读/写/擦操作和高一级的用于磁盘仿真和闪存管理算法的软件,包括性能优 化。

  在NOR器件上运行代码不需要任何的软件支持,在NAND器件上进行同样操作时,通常需要驱动程序,也就是内存 技术驱动程序(MTD),NAND和NOR器件在进行写入和擦除操作时都需要MTD。

  使用NOR器件时所需要的MTD要相对少一些,许多厂商都提供用于NOR器件的更高级软件,这其中包括M- System的TrueFFS驱动, 该驱动被Wind River system、Microsoft、QNX Software system、Symbian和Intel等厂商所采用。

驱动还用于对DiskOnChip产品进行仿真和NAND闪存的管理,包括纠错、坏块处理和损耗平衡。

NOR FLASH的主要供应商是INTEL ,MICRO等厂商,曾经是FLASH的主流产品,但现在被NAND FLASH挤的比较难受。它的优点是可以直接从FLASH中运行程序,但是工艺复杂,价格比较贵。

NAND FLASH的主要供应商是SAMSUNG和东芝,在U盘、各种存储卡、MP3播放器里面的都是这种FLASH,由于工艺上的不同,它比NOR FLASH拥有更大存储容量,而且便宜。但也有缺点,就是无法寻址直接运行程序,只能存储数据。另外NAND FLASH 非常容易出现坏区,所以需要有校验的算法。

在掌上电脑里要使用NAND FLASH 存储数据和程序,但是必须有NOR FLASH来启动。除了SAMSUNG处理器,其他用在掌上电脑的主流处理器还不支持直接由NAND FLASH 启动程序。因此,必须先用一片小的NOR FLASH 启动机器,在把OS等软件从NAND FLASH 载入SDRAM中运行才行,挺麻烦的。

DRAM,ROM,FLASH工作原理

DRAM 利用MOS管的栅电容上的电荷来存储信息, 一旦掉电信息会全部的丢失,由于栅极会漏电,所以每隔一定的时间就需要一个刷新机构给这些栅电容补充电荷,并且 每读出一次数据之后也需要补充电荷,这个就叫动态刷新,所以称其为动态随机存储器。由于它只使用一个MOS管来存信息,所以集成度可以很高,容量能够做的 很大。SDRAM比它多了一个与CPU时钟同步。

SRAM 利用寄存器来存储信息,所以一旦掉电,资料就会全部丢失,只要供电,它的资料就会一直存在,不需要动态刷新,所以叫静态随机存储器。

以上主要用于系统内存储器,容量大,不需要断电后仍保存数据的。

Flash ROM 是利用浮置栅上的电容存储电荷来保存信息,因为浮置栅不会漏电,所以断电后信息仍然可以保存。也由于其机构简单所以集成度可以做的很高,容量可以很大。 Flash rom写入前需要用电进行擦除,而且擦除不同与EEPROM可以以byte(字节)为单位进行,flash rom只能以sector(扇区)为单位进行。不过其写入时可以byte为单位。flash rom主要用于bios,U盘,Mp3等需要大容量且断电不丢数据的设备。


各种Flash卡:
数码闪存卡:主流数码存储介质 
数码相机、MP3播放器、掌上电脑、手 机等数字设备是闪存最主要的市场。前面提到,手机领域以NOR型闪存为主、闪存芯片被直接做在内部的电路板上,但数 码相机、MP3播放器、掌上电脑等设备要求存储介质具备可更换性,这就必须制定出接口标准来实现连接,闪存卡技术应运而生。闪存卡是以闪存作为核心存储部 件,此外它还具备接口控制电路和外在的封装,从逻辑层面来说可以和闪盘归为一类,只是闪存卡具有更浓的专用化色彩、而闪盘则使用通行的USB接口。由于历 史原因,闪存卡技术未能形成业界统一的工业标准,许多厂商都开发出自己的闪存卡方案。目前比较常见的有CF卡、SD卡、SM卡、MMC卡和索尼的 Memory Stick记忆棒。

CF卡(CompactFlash) 
CF卡是美国SanDisk 公司于1994引入的闪存卡,可以说是最早的大容量便携式存储设备。它的大小只有43mm×36mm×3.3mm,相当于笔记本电脑的PCMCIA卡体积 的四分之一。CF卡内部拥有独立的控制器芯片、具有完全的PCMCIA-ATA 功能,它与设备的连接方式同PCMCIA卡的连接方式类似,只是CF卡的针脚数多达五十针。这种连接方式稳定而可靠,并不会因为频繁插拔而影响其稳定性。 
CF 卡没有任何活动的部件,不存在物理坏道之类的问题,而且拥有优秀的抗震性能, CF卡比软盘、硬盘之类的设备要安全可靠。CF卡的功耗很低,它可以自适应3.3伏和5伏两种电压,耗电量大约相当于桌面硬盘的百分之五。这样的特性是出 类拔萃的,CF卡出现之后便成为数码相机的首选存储设备。经过多年的发展,CF卡技术已经非常成熟,容量从最初的4MB飙升到如今的3GB,价格也越来越 平实,受到各数码相机制造商的普遍喜爱,CF卡目前在数码相机存储卡领域的市场占有率排在第二位。

MMC卡 (MultiMediaCard) 
MMC卡是SanDisk公司和德国西门子公司于1997年 合作推出的新型存储卡,它的尺寸只有32mm×24mm×1.4mm、大小同一枚邮票差不多; 其重量也多在2克以下,并且具有耐冲击、可反复读写30万次以上等特点。从本质上看,MMC与CF其实属于同一技术体系,两者结构都包括快闪存芯片和控制 器芯片,功能也完全一样,只是MMC卡的尺寸超小,而连接器也必须做在狭小的卡里面,导致生产难度和制造成本都很高、价格较为昂贵。MMC主要应用与移动 电话和MP3播放器等体积小的设备

你可能感兴趣的:(编程,cache,Microsoft,Flash,存储,产品)