题目描述:
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area.
For example, given the following matrix:
1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0Return 4.
一开始我打算用求最大矩形的那个方法去做,但是后来发现我们可以将最大矩形转换成最大边长来做,就没有那么复杂:
当判断以某个点为正方形右下角时最大的正方形时,那它的上方,左方和左上方三个点也一定是某个正方形的右下角,否则该点为右下角的正方形最大就是它自己了。这是定性的判断,那具体的最大正方形边长呢?我们知道,该点为右下角的正方形的最大边长,最多比它的上方,左方和左上方为右下角的正方形的边长多1,最好的情况是是它的上方,左方和左上方为右下角的正方形的大小都一样的,这样加上该点就可以构成一个更大的正方形。但如果它的上方,左方和左上方为右下角的正方形的大小不一样,合起来就会缺了某个角落,这时候只能取那三个正方形中最小的正方形的边长加1了。假设dpi表示以i,j为右下角的正方形的最大边长,则有
dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1
当然,如果这个点在原矩阵中本身就是0的话,那dpi肯定就是0了。
代码如下:
public class Solution { public int maximalSquare(char[][] matrix) { if(matrix.length == 0) return 0; int m = matrix.length, n = matrix[0].length; int max = 0; int[][] dp = new int[m][n]; for(int i = 0; i < m; i++){ dp[i][0] = matrix[i][0] - '0'; max = Math.max(max, dp[i][0]); } for(int i = 0; i < n; i++){ dp[0][i] = matrix[0][i] - '0'; max = Math.max(max, dp[0][i]); } for(int i = 1; i < m; i++){ for(int j = 1; j < n; j++){ dp[i][j] = matrix[i][j] == '1' ? Math.min(dp[i-1][j-1], Math.min(dp[i-1][j], dp[i][j-1])) + 1 : 0; max = Math.max(max, dp[i][j]); } } return max * max; } }