HDU 2516-取石子游戏(斐波那契博弈)

取石子游戏

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4016    Accepted Submission(s): 2399


Problem Description
1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍。取完者胜.先取者负输出"Second win".先取者胜输出"First win".
 

Input
输入有多组.每组第1行是2<=n<2^31. n=0退出.
 

Output
先取者负输出"Second win". 先取者胜输出"First win".
参看Sample Output.
 

Sample Input
   
   
   
   
2 13 10000 0
 

Sample Output
   
   
   
   
Second win Second win First win
 

Source
ECJTU 2008 Autumn Contest
 

Recommend
lcy   |   We have carefully selected several similar problems for you:   2509  2512  1536  2510  1907

斐波那契是必败点。
以下From:
斐波那契博弈模型,大致上是这样的:
有一堆个数为 n 的石子,游戏双方轮流取石子,满足:
1. 先手不能在第一次把所有的石子取完;
2. 之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。
约定取走最后一个石子的人为赢家,求必败态。
 
 分析:   
 n = 2时输出second;
 n = 3时也是输出second;
 n = 4时,第一个人想获胜就必须先拿1个,这时剩余的石子数为3,此时无论第二个人如何取,第一个人都能赢,输出first;
 n = 5时,first不可能获胜,因为他取2时,second直接取掉剩下的3个就会获胜,当他取1时,这样就变成了n为4的情形,所以输出的是second;
 n = 6时,first只要去掉1个,就可以让局势变成n为5的情形,所以输出的是first;
 n = 7时,first取掉2个,局势变成n为5的情形,故first赢,所以输出的是first;     
 n = 8时,当first取1的时候,局势变为7的情形,第二个人可赢,first取2的时候,局势变成n为6得到情形,也是第二个人赢,取3的时候,second直接取掉剩下的5个,所以n = 8时,输出的是second;    

 …………      

 从上面的分析可以看出,n为2、3、5、8时,这些都是输出second,即必败点,仔细的人会发现这些满足斐波那契数的规律,可以推断13也是一个必败点。     

 借助“Zeckendorf定理”(齐肯多夫定理):任何正整数可以表示为若干个不连续的Fibonacci数之和。n=12时,只要谁能使石子剩下8且此次取子没超过3就能获胜。因此可以把12看成8+4,把8看成一个站,等价与对4进行"气喘操作"。又如13,13=8+5,5本来就是必败态,得出13也是必败态。也就是说,只要是斐波那契数,都是必败点。

所以我们可以利用斐波那契数的公式:fib[i] = fib[i-1] + fib[i-2],只要n是斐波那契数就输出second。


#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<set>
#include<algorithm>
using namespace std;
#define MAXN 1010
set<int>s;
int f[MAXN];
void fab()//打出斐波那契数列表
{
    int i;
    f[0]=1,f[1]=1;
    s.insert(f[0]);
    s.insert(f[1]);
    for(i=2; i<MAXN; ++i)
    {
        f[i]=f[i-1]+f[i-2];
        s.insert(f[i]);
    }
}
void solve(int n)
{
    if(s.count(n))puts("Second win");//fab是必败点
    else puts("First win");
}

int main()
{
    fab();
    int n;
    while(cin>>n,n)
        solve(n);
    return 0;
}

 

你可能感兴趣的:(C++,HDU,博弈,取石子游戏,斐波那契博弈,2516)